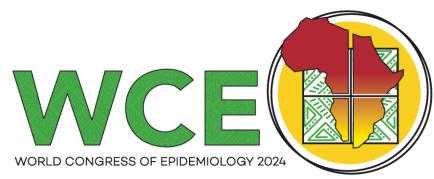
Prediction of Intensive Care Unit (ICU) admission in COVID-19 patients in Brazil: a multicentric machine learning analysis


Alexandre Chiavegatto Filho

School of Public Health, University of São Paulo, São Paulo, Brazil

Authors: Carine Savalli, Roberta Moreira Wichmann, Fabiano Barcellos Filho, Fernando Timoteo Fernandes.

IACOV-BR

- A multicenter cohort study involving 16,236 adult patients who tested positive for COVID-19
- March-August 2020
- 18 hospitals across all the five regions of Brazil
- Large diversity in demographics, resources, and clinical practices
- 22 predictors: laboratory, clinical, and demographic data

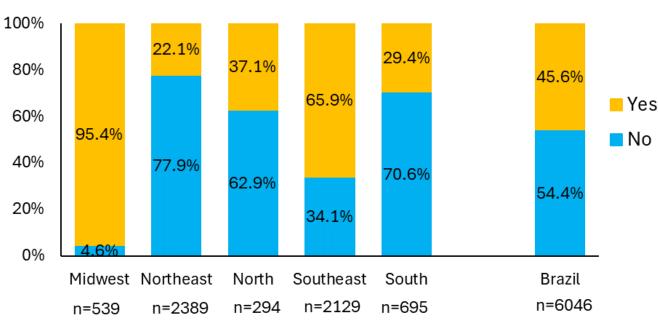
Current study

- Aim: to predict Intensive Care Unit (ICU) admission in patients with COVID-19
- IACOV-BR
- Adult patients (> 18 years)
- 14 hospitals included with sample sizes ranging from 47 to 1500 patients

Data preprocessing

For each hospital

- Box plots to identify extreme values
- Multinomial variables converted into dummy variables
- Continuous variables normalized with z-score transformation
- Variables with correlation exceeding 0.90 removed
- Variables with over 90% missing values were excluded
- Multiple imputation using chained equations (MICE)


Machine Learning methods

For each hospital

- Three popular machine learning algorithms for tabular data: XGBoost, LightGBM, and CatBoost
- Hyperparameters optimization: HyperOpt 10-fold cross-validation
- Training/test (70% / 30%)
- To address the class imbalance: random oversampling in the training dataset
- Performance metric: area under the ROC curve (AUROC)

Results

- Males: more prevalent (53.8%)
- Age: 57.5 years (SD=17.9)
- Among patients who provided information about self-declared race: White (65.4%)

Proportion of pacients according to ICU admission

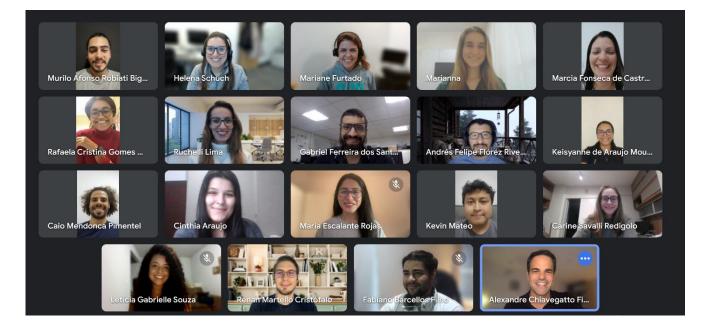
Results

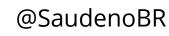
Region	Hospital	n	% of patients admitted to ICU	AUC	Best algorithm
SouthEast	SE2	1500	69.9%	0.799	XGBoost
	SE3	449	67.5%	0.764	LightGBM
	SE5	124	21.8%	0.667	LightGBM
	SE6	56	42.9%	0.814	Catboost
NorthEast	NE1	1359	18.0%	0.940	LightGBM
	NE2	845	21.9%	0.666	Catboost
	NE3	112	58.9%	0.664	LightGBM
	NE4	73	42.5%	0.709	Catboost
MidWest	MW1	539	95.4%	0.673	LightGBM
South	S1	456	30.0%	0.748	LightGBM
	S2	148	14.2%	0.987	Catboost
	S3	91	50.5%	0.755	LightGBM
North	N1	247	30.4%	0.817	XGBoost
	N2	47	72.3%	0.679	LightGBM

Discussion

- The prediction of ICU admission with machine learning algorithms was good or excellent (AUC>0.7) for 9 hospitals
- Large variation among hospitals regarding the prevalence of the outcome
- Wider variety of predictive performances and best algorithms
- To those hospitals with poor predictive performance, alternative strategies should be evaluated (e.g. data aggregation or transfer learning)

Acknowledgments


Funding for this research was provided by the National Council for Scientific and Technological Development – CNPq and the Department of Science and Technology of Secretariat of Science, Technology, Innovation and Health Complex of Ministry of Health of Brazil – MoH, under grant No. 445020/2023-7


Thank you!

Alexandre Chiavegatto Filho

@labdaps

alexdiasporto@usp.br

