
IMPACT OF NIGHTIME TEMPERATURES ON SLEEP BEHAVIOUR AMONG LOWINCOME POPULATIONS. A Khayelitsha-based research study

ALICE GWYNNE-EVANS

UNIVERSITY OF CAPE TOWN, SOUTH AFRICA 27 SEPTEMBER 2024

Importance

- Predicted 2.4°C or 36°F increase in global temperature by 2100
- Rising temperatures affect human health and sleep
- Sleep plays an integral role in human biological functions

Sleep variables

Objective Sleep Measurements:

- measured using wrist actigraphy over 7 days
- collected in 1-minute epochs
- scored using the criteria of Patel et al. (2015)

Sleep Duration (time in bed)

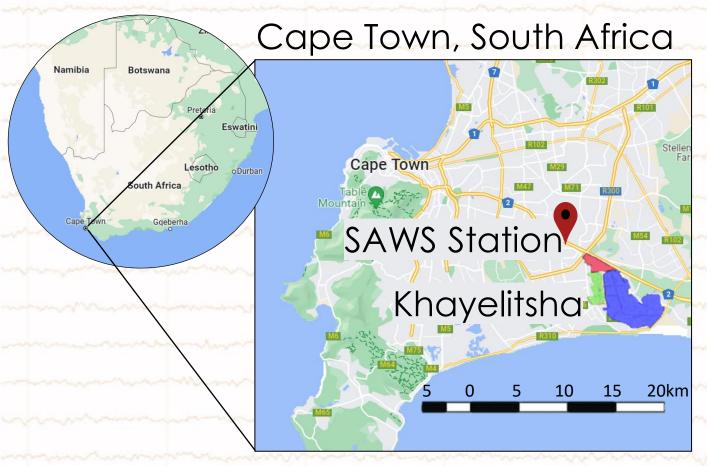
Wake after sleep onset (WASO)

Total sleep time

Average length of wake bouts

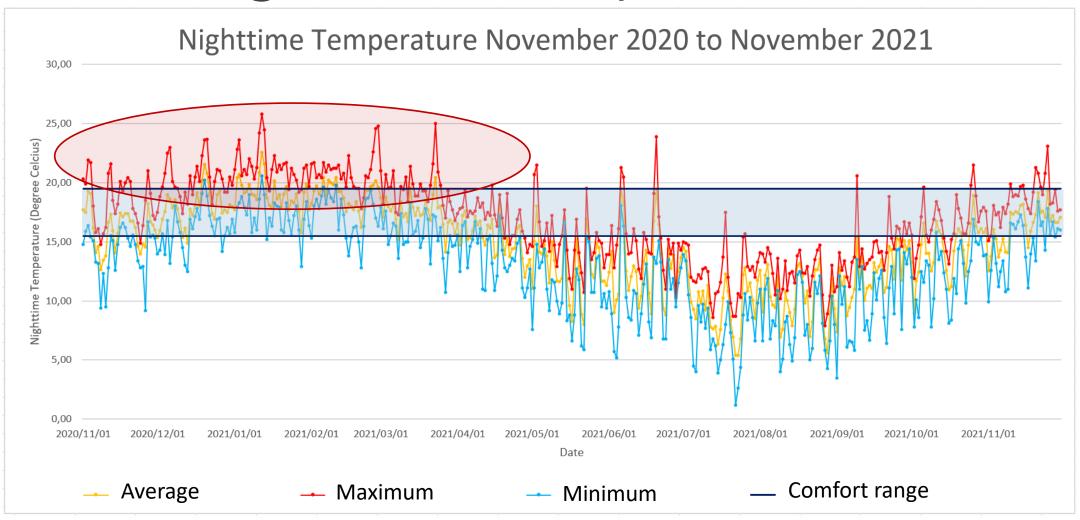
Onset latency

Number of wake bouts


Efficiency (How well?)

Percent wake

Objectives:


- To explore and quantify the effects of the thermal environment on sleep patterns in a low-income cohort.
- High temperatures will result in disrupted sleep patterns and reduced sleep quality.

Khayelitsha

Nighttime temperature

(SAWS, 2023 and Wang et al., 2022)

Participant characteristics

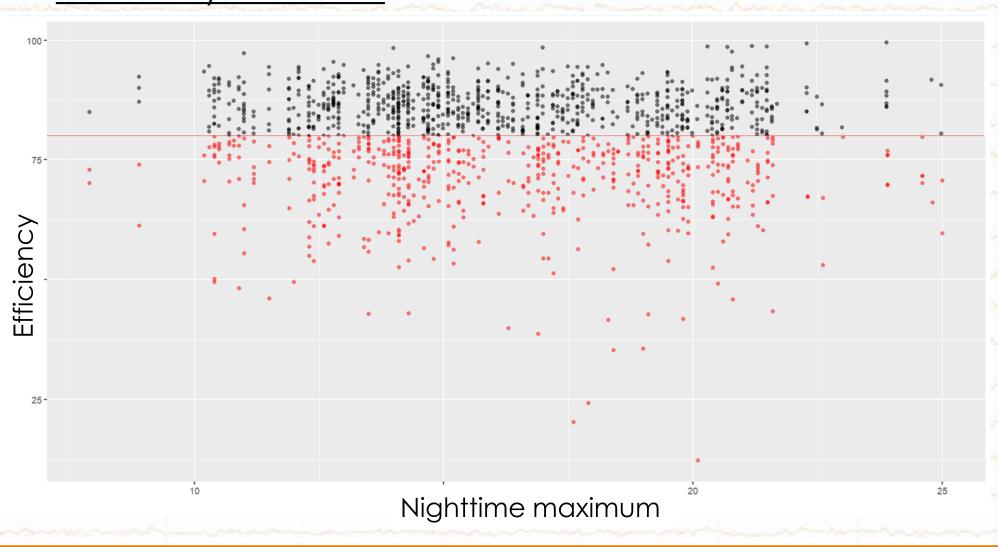
	Frequency (%)
Age	$\bar{x} = 39$
Male/Female	49/51
Employed	28
Smoker	15
Alcohol	47
Diabetes	4
Hypertension	52
High blood pressure	17

Housing characteristics

	Frequency (%)
Electricity	96
Fan (% yes)	20
House density (occupants)	4
Roof:	
Iron/Aluminium sheets Roofing tiles Asbestos	35 12 29
Combination	20
Wall: Burnt brick Iron/aluminium	19
sheet	17
Cement	31
Combination	26

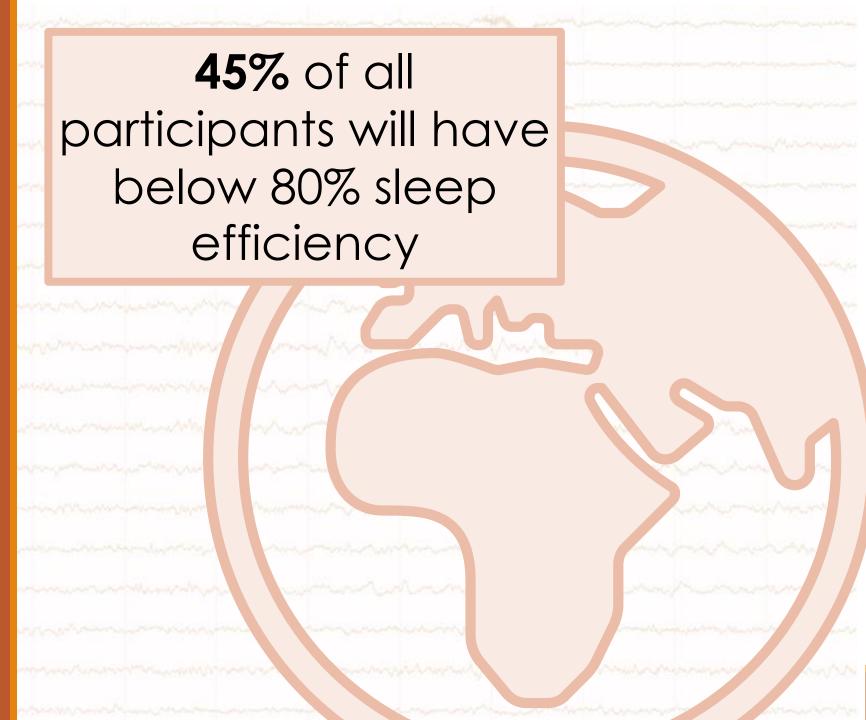
Sleep characteristics

	Average x̄	Median
Sleep Duration	543.0	550.2
Total sleep time	443.1	446.8
Onset Latency	13.0	5.5
WASO	98.9	86.3
Number of wake bouts	61.3	58
Average length of wake bouts	1.6	1
Efficiency	80.0	81.76
Percent Wake	17.9	16.36


Results

Multivariate analysis of sleep variables vs nighttime maximum and minimum temperature adjusting for covariates

	Night max			Night min				
	Constant	coefficient	p-value	SE	Constant	coefficient	p-value	SE
Duration	788.62	-5.32	0.00	1.40	745.24	-3.38	0.01	1.27
Sleep time	681.94	-5.21	0.00	1.20	644.74	-3.73	0.00	0.00
Average								
wake bouts	1.24	0.02	0.02	0.01	1.31	0.02	0.01	0.01
Efficiency	84.93	-0.22	0.01	0.09	84.28	-0.23	0.00	0.08
Percent wake	12.48	0.19	0.02	0.08	12.96	0.21	0.00	0.07


^{*}WASO, onset latency and number of wake bouts were NS

Nighttime maximum temperature vs efficiency, with 80% efficiency threshold

80% efficiency threshold

Take Aways

Acknowledgements

Lara Dugas - School of Public Health University of Cape Town (UCT) & Loyola University Chicago

Amy Luke – Parkinson School of Health Sciences & Public Health, Loyola University Chicago

Michaela Deglon – School of Public Health, UCT

Dale Rae – Human Biology, UCT

Estelle V. Lambert – Human Biology, UCT

Mark New - African Centre for Climate Development Initiative, UCT

Funding: NIH grants: R01-DK070853 (Luke), R01-DK111848 (Dugas), R01-HL148271 (Dugas) and the AXA Research Fund (Dugas)

