Extending Randomized Trial Estimates to Different Target Populations

An application to a nested trial comparing anticoagulant regimens for percutaneous coronary intervention

Anita Berglund

PhD, Ass Professor Epidemiology

Unit of Epidemiology, CAUSALab IMM, Institute of Environmental Medicine (IMM), Karolinska Institutet, Stockholm, Sweden

Co-authors, funding and ethical approvals

- Sessica Young, Karolinska Institutet, Unit of Epidemiology, Institute of Environmental Medicine (IMM), CAUSALab IMM, Stockholm, Sweden (lead author)
- Niguel Hernán, Harvard TH Chan School of Public Health, CAUSALab, Dep. Epidemiology and Biostatistics, Boston, USA and Karolinska Institutet, CAUSALab IMM, Stockholm, Sweden
- **Anthony Matthews**, Karolinska Institutet, CAUSALab IMM, Stockholm, Sweden
- **Issa J Dahabreh**, Harvard TH Chan School of Public Health, CAUSALab, Dep. Epidemiology and Biostatistics, Boston, USA
- **David Erlinge,** Dep. of Cardiology, Clinical Sciences, Lund University and Skåne University Hospital, Lund and Swedish Society of Cardiology, Uppsala, Sweden (PI VALIDATE)
- **Rebecca T Rylance**, Dep. of Cardiology, Clinical Sciences, Lund University and Skåne University Hospital, Lund, Sweden
- **Ole Fröbert,** Örebro University Hospital, Dep. of Cardiology, Örebro, Sweden, Dep. of Clinical Medicine, Aarhus University Health, Aarhus and Steno Diabetes Center Aarhus, Aarhus University Hospital. Arhus, Denmark
- Stefan James, Department of Medical Sciences and Cardiology, Uppsala Clinical Research Center, Uppsala University, Uppsala, Sweden

Supported by grants from the Swedish Research Council (2018-03028) and the Swedish Research Council for Health, Working Life and Welfare (2021-00905). Ethical approvals 2012/796, 2013-01-08, 2022-04980-02

Motivation

The population the evidence is generated from *differs* from the population the evidence is applied to

- Underrepresentation: Not everyone who was eligible enrolled in the trial
- Excluded: Not everyone who is a candidate for treatment was eligible for the trial

Generalizability Transportability

Extending Inference from Trials

If characteristics that differ between the populations modify the treatment effect, then:

Effect from Trial ≠ *Effect in Target Population*

- 1. Generalizability: the target population is a subset of the trial-eligible population
- 2. Transportability: the target population includes individuals who were not eligible for the trial

Today's Aim Extending inferences from the VALIDATE trial

Registry-based randomized clinical trial (RRCT): VALIDATE

Patients with myocardial infarction (MI) undergoing percutaneous coronary intervention (PCI)

Nested in nationwide SWEDEHEART quality registry, linked to several other registers

Bivalirudin vs Heparin monotherapy (treatment)

Composite outcome of death, MI, major bleeding @ 180 days HR: 0.96 (0.84, 1.10) Extend to 2 target populations:

- 1) All trial-eligible patients in Sweden (Generalizability)
- 2) All treatment-eligible patients in Swedenregardless of if they were eligible for VALIDATE (Transportability)

Erlinge et al. NEJM 2017

VALIDATE and Target Populations

Compare baseline characteristics between:
 VALIDATE enrolled vs. Trial-eligible Target vs Treatment-eligible Target

- Estimation of assigned treatment effect in VALIDATE
 Logistic regression model for the outcome
- Setimation of assigned treatment effect in the trial-eligible and the treatment-eligible target populations
 - Logistic regression model with baseline covariates.
 - Standardize risk estimates to baseline covariate distribution of each target population

Assumptions needed to make valid causal inferences within the trial:

Consistency (well-defined interventions)

Conditional exchangeability (across treatment arms)

Positivity (positive Pr of receiving each treatment)

Additional assumptions for extending inference:

- Consistency (same versions of treatment used in and out of the trial)
- Conditional exchangeability (of trial participation)
- Positivity of trial participation (positive Pr of trial participation conditional on EMMs)

By design, these hold in VALIDATE

Plausibility of these may differ across aims: Generalize to trial eligible vs. transport to treatment eligible

Results – Baseline Comparisons

9

Results – Estimated Treatment Effects

Population	Treatment	# of individuals	# of events	Risk	Risk Difference	Risk Ratio	
VALIDATE	Heparin	2964	383	12.9 (11.7, 14.1)			
	Bivalirudin	2968	368	12.4 (11.2, 13.6)	-0.5 (-2.2, 1.2)	0.96 (0.84, 1.10)	
Target Population 1: Trial-Eligible Population	Heparin			14.2 (12.8, 15.5)			
	Bivalirudin			13.2 (11.9, 14.5)	-1.0 (-3.2, 1.1)	0.93 (0.79, 1.08)	
Target Population 2: Treatment-Eligible Population	Heparin			14.5 (12.8, 16.5)			
	Bivalirudin			13.7 (12.5, 14.9)	-0.9 (-3.4, 1.5)	0.94 (0.79, 1.11)	
	≈ HR: 0.96 (0.84, 1.10) from the publishe						

Erlinge et al. Bivalirudin versus Heparin Monotherapy in Myocardial Infarction. NEJM 2017

10

Main findings and Discussion

Different decision makers may have different target populations
 O Clinical trialists: All trial-eligible patients
 O Guideline makers: All treatment-eligible patients

- Ideal setting with original trial nested in registry and nationwide population registries
 - Differences existed, but not large enough to translate to meaningful clinical difference
- Consistent with published VALIDATE trial, no difference at 180 days between treatments compared in either target population
- Higher risk in both target populations expected consequence of trial recruiting healthier individuals
- Next step, include a wide range of socioeconomic factors from registers

anita.berglund@ki.se

Unit of Epidemiology, Institute of Environmental Medicine (IMM)