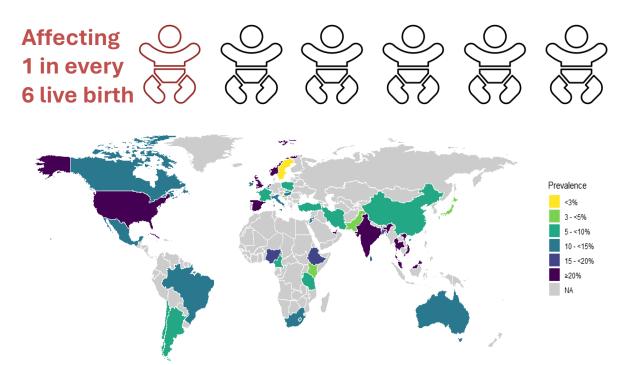
The relation and mediation pathways of maternal hyperglycaemia and liability to gestational diabetes mellitus with neonatal outcomes: a twosample Mendelian Randomization study

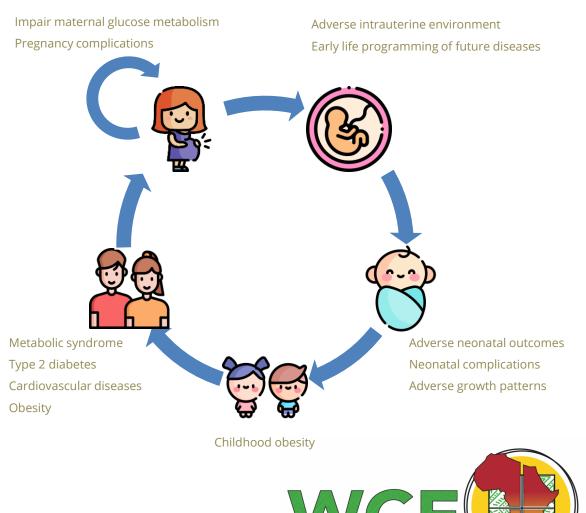
Presenter: Baoting HE

Affiliation: School of Public Health, The University of Hong Kong, Hong Kong SAR, China

Date: September 25, 2024


Acknowledgements: Summary genomic data contributed by MAGIC, UK Biobank, FinnGen, DIAMENTE, EGG, and GIANT consortium, and other published GWAS.

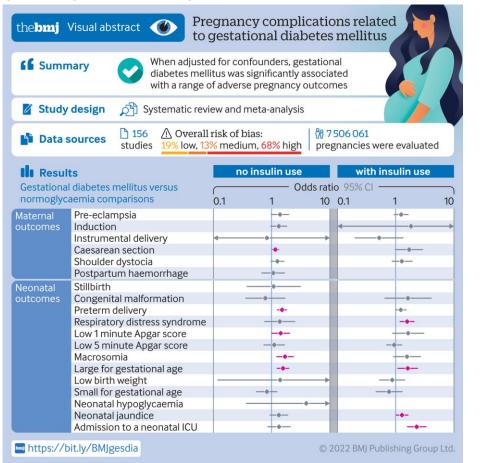
Background


Maternal hyperglycemia and adverse neonatal birth outcomes

Hyperglycaemia in pregnancy: either pre-existing diabetes, diabetes in pregnancy or gestational diabetes mellitus. Gestational diabetes mellitus (GDM): mother without diabetes develop hyperglycemia during pregnancy.

(Data source: IDF, 2021)

Potential effect on maternal and offspring health


WORLD CONGRESS OF EPIDEMIOLOGY 202

Background

Evidence were limited on maternal hyperglycemia with neonatal birth outcomes.

Evidence from observational studies

(Possibly confounded)

Evidence from RCTs

(Small sample size, unclear mechanism)

Table 3 Neonatal outcomes of metformin use during pregnancy

Study	Туре	Indication	Control group	GA	PB	CA	BW	MS	LGA	SGA	NH	APGAR	NICU	RDS
Rowan et al. (MiG) [8]	RCT	GDM	Insulin	Ţ	t		↔				Ļ	÷		↔
Niromanesh et al. [75]	RCT	GDM	Insulin	\leftrightarrow	\leftrightarrow	\leftrightarrow	1	\leftrightarrow	Ļ	\leftrightarrow	\leftrightarrow	↔	\leftrightarrow	\leftrightarrow
Spaulonci et al. [76]	RCT	GDM	Insulin	\leftrightarrow		\leftrightarrow		\leftrightarrow			Ļ	\leftrightarrow		\leftrightarrow
Tertti et al. [26]	RCT	GDM	Insulin	\leftrightarrow	\leftrightarrow		\leftrightarrow					\leftrightarrow	\leftrightarrow	
Ainuddinn et al. [10]	RCT	GDM	Insulin				1		\leftrightarrow	\leftrightarrow	1	1		
Rowan et al. (MiG TOFU) [22]	RCT	GDM	Insulin	ţ	↔		↔		1	↔				
Eid et al. [27]	RCT	GDM	Insulin	\leftrightarrow	\leftrightarrow	\leftrightarrow	1	Ļ	Ļ	\leftrightarrow	Ļ	\leftrightarrow	\leftrightarrow	\leftrightarrow
Gui et al. [29]	SR/MA	GDM	Insulin	4	1	\leftrightarrow	\leftrightarrow		\leftrightarrow	\leftrightarrow	\leftrightarrow	\leftrightarrow	\leftrightarrow	\leftrightarrow
Balsells et al. [30]	SR/MA	GDM	Insulin	4	1		\leftrightarrow	\leftrightarrow	\leftrightarrow	\leftrightarrow	\leftrightarrow^{a}	\leftrightarrow	\leftrightarrow	\leftrightarrow
Feng et al. [28]	SR/MA	GDM	Insulin		1				\leftrightarrow		1			\leftrightarrow
Guo et al. [20]	SR/MA	GDM	Insulin	4	\leftrightarrow	\leftrightarrow	1	Ļ	\leftrightarrow	\leftrightarrow	1	\leftrightarrow	1	\leftrightarrow
Tarry-Adkins et al. [57]	SR/MA	GDM	Insulin				Ļ	ţ	ţ	÷				
Wang X. et al. [38]	SR/MA	GDM	Insulin	4	\leftrightarrow	\leftrightarrow	1	1	Ļ	\leftrightarrow	1	\leftrightarrow	1	\leftrightarrow
Ara Ainuddin et al. [9]	RCT	T2DM	Insulin	\leftrightarrow			\leftrightarrow	\leftrightarrow		1	$\leftrightarrow^{\rm b}$	\leftrightarrow	1	
Feig et al. (MiTy) [31]	RCT	T2DM	Placebo + insulin	\leftrightarrow	\leftrightarrow	\leftrightarrow	1		\leftrightarrow	1	\leftrightarrow			\leftrightarrow
Lin et al. [55]	Cohort	T2DM	Insulin		\leftrightarrow	Ļ			\leftrightarrow	\leftrightarrow		\leftrightarrow		
Vanky et al. (PregMet) [43]	RCT	PCOS	Placebo		↔		↔					↔		
Løvvik et al. (PregMet2) [24]	RCT	PCOS	Placebo	↔	÷									
Zeng et al. [44]	SR/MA	PCOS	Placebo		Ļ									
Syngelaki et al. [17]	RCT	Obesity	Placebo		\leftrightarrow		\leftrightarrow		\leftrightarrow		\leftrightarrow	\leftrightarrow	\leftrightarrow	\leftrightarrow
Dodd et al. (GRoW) [47]	RCT	Overweight, obesity	Placebo	÷	÷		÷		\leftrightarrow	\leftrightarrow			÷	
Gilbert et al. [21]	SR/MA	PCOS, diabetes	No Met exposure			Ļ								
Given et al. [56]	Case- control	Diabetes, PCOS, infertility or combination	No Met exposure			↔								ţ
Diav-Citrin et al. [53]	Cohort	PCOS, T2DM	Insulin and non- teratogenic exposure		÷	÷								
Scherneck et al. [54]	Cohort	PCOS/ Fertility, diabetes, insulin resistance	No Met exposure		↔	↔	↔							
Brand et al. [19]	Cohort	PCOS, GDM, T2DM	Insulin		\leftrightarrow	\leftrightarrow	1		\leftrightarrow	1	\leftrightarrow			

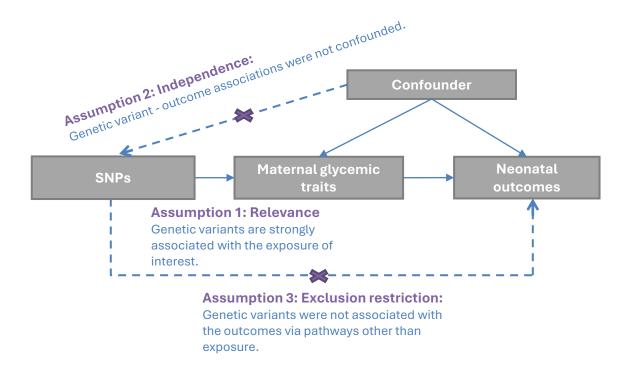
BW birth weight, CA congenital anomalies, GA gestational age at delivery, GDM gestational diabetes mellitus, LGA large-for-gestational age, Met metformin, MS macrosomia, NH neonatal hypoglycemia, NICU admission to neonatal intensive care unit, PB preterm birth, PCOS polycystic ovary syndrome, RCT randomized controlled trial, RDS respiratory distress syndrome, SGA small-for-gestational age, SR/MA systematic review and meta-analysis, TZDM type 2 diabetes mellitus

↑ significant increase, ↓ significant reduction, ↔ no significant difference

^aSignificantly lower incidence of severe neonatal hypoglycemia was found in the metformin group compared with the insulin group. Severe neonatal hypoglycemia was defined by authors or by requiring intravenous glucose or NICU admission

(S. A. Paschou et al. 2023). Endocrine

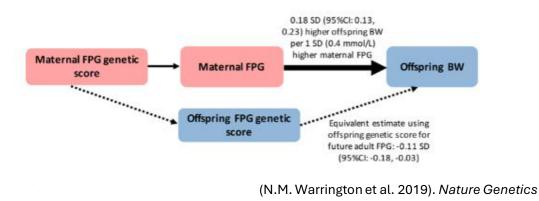
WORLD CONGRESS OF EPIDEMIOLOGY 2024

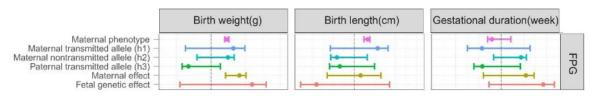

(W. Ye et al. 2020). BMJ

^bSignificantly less neonatal hypoglycemia was found in the metformin

Background

MR study on maternal hyperglycemia and adverse neonatal birth outcomes


Mendelian randomization (MR) study, a design more robust to confounding due to use of genetics randomly allocated at conception. Is increasingly used to explore


Evidence from Previous MR study

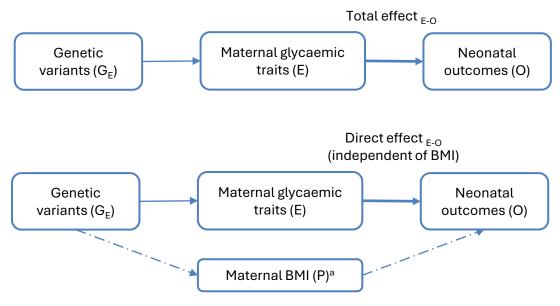
(only a few glycemic traits, without exploring mechanism)

EGG meta-analysis with the UK Biobank

The Born in Guangzhou Cohort study

(S. Huang et al. 2024). Nature

Research aims:


1. Comprehensively the association of maternal hyperglycemia and neonatal birth outcomes (Analysis I)

2. Assess the potential mediation pathways via placental weight and gestational hypertension (Analysis II)

Method

Analysis 1: MR analysis for total effect of maternal glycemic traits on neonatal outcomes

Study design: 2-sample MR

a. SNPs for maternal BMI extracted from a meta analysis of GIANT consortium and UK Biobank (women only, n= 434,794)

Main analysis: Inverse variance weighted (IVW) Sensitivity analysis: Weighted Median, MR Egger, MR-RAPs, MVMR adjusted for BMI.

Genetic instruments of maternal glycaemic traits (P<5*10⁻⁸, r2<0.001):

Traits, unit	Data source	Women- specific	Sample size	N _{SNP}	R ²	F
Fasting glucose (FG), mmol/L		Yes	73,089	21	3.0%	100.8
Fasting insulin (FI), pmol/L	MAGIC consortium	Yes	50,404	4	0.3%	33.1
Insulin sensitivity index (ISI), SD		No	53,657	8	0.7%	107.0
Insulin fold change (IFC), SD		No	53,287	4	0.3%	248.0
Glycated hemoglobin (HbA1c), SD	UK Biobank	Yes	185,022	199	11.3%	45.3
Liability to gestational diabetes mellitus (GDM), log odds	Finngen (R8)	Yes	Case: 12,332 Control:131,109	10	1.7%	46.0
Liability to type 2 diabetes (T2D), log odds	DIAMANTE	No	Case: 80.154 Control:131,109	87	4.5%	226.3

Maternal genetic association with neonatal outcomes:

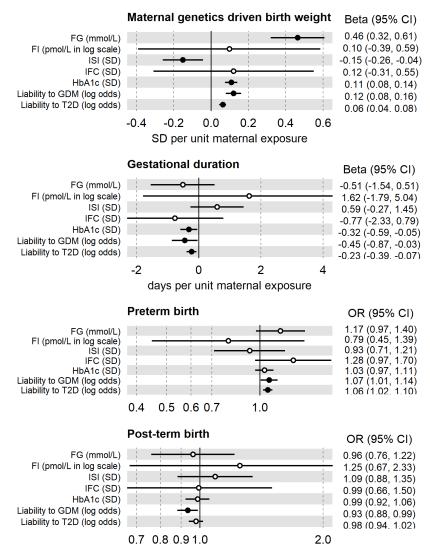
Traits, unit	Data source	Sample size			
Maternal genetics driven offspring birth weight, SD		Own birth weight: 297,359 Offspring birth weight: 210,248			
Gestational duration, days	EGG consortium combined	151,987			
Preterm birth, log odds	with other large cohorts	233, 290 (Case:15,419)			
, Post-term birth, log odds	_	131,279 (Case:15,972)			
Sporadic miscarriage, log odds	GWAS from T. Laisk et al.	224,105 (Case: 49,996)			

Gestational duration, preterm and post-term birth were limited to spontaneous deliveries.

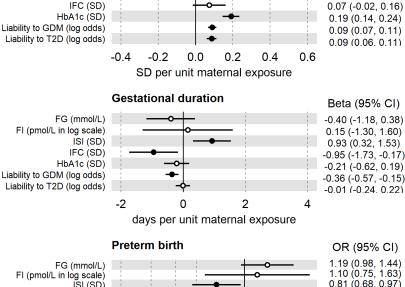
Results

Analysis 1: MR analysis for total effect of maternal glycemic traits on neonatal outcomes

Total effect _{E-O}


Maternal hyperglycaemia, lower insulin sensitivity, and liability to GDM and T2D were associated with higher birth weight.

Liability to T2D was associated with preterm birth and shorter gestational duration (not exist after adjusted for BMI).


Liability to GDM and lower insulin sensitivity is linked with higher preterm birth and shorter gestational duration (after adjusted for BMI).

IVW

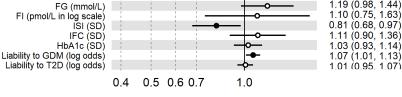
Odds ratios per unit maternal exposure

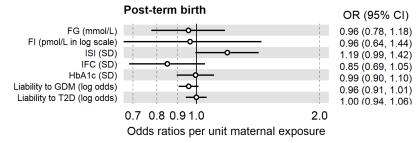
MVMR-adjusted for BMI

FG (mmol/L)

ISI (SD)

FI (pmol/L in log scale)

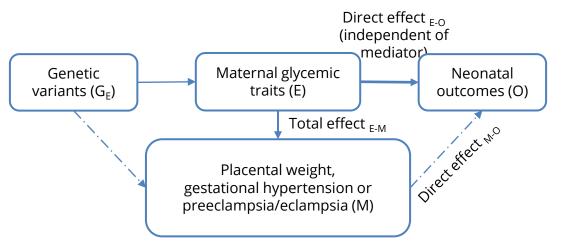

Maternal genetics driven birth weight


Beta (95% CI)

0.41 (0.33, 0.50)

0.02 (-0.14, 0.18)

-0.09 (-0.16, -0.02)



FG - Fasting glucose; FI - Fasting insulin; ISI - insulin sensitivity index; IFC - insulin fold change; HbA1c - Glycated haemoglobin; GDM - Gestational diabetes; T2D - Type 2 diabetes

Method

Analysis 2: Mediation pathways via placental growth and gestational hypertension

Study design: 2-step MR and MVMR

Main analysis: Product of the coefficient methods Genetic association of putative mediators:

Traits, unit	Data source	Women- specific	Sample size		
Placental weight (maternal effect), SD	EGG consortium	Yes	Fetal GWAS: 65,405; Maternal GWAS: 61,228		
Gestational hypertension, log odds	GWAS data	Yes	Case: 11,027 Control: 417,788		
Preeclampsia/eclampsia, log odds	from M. C. Honigberg et al.	No	Case: 17,150 Control: 451,241		

Maternal effect on placental weight Beta (95% CI) FG (MAGIC consortium) 0.28 (0.15, 0.40) ISI (MAGIC consortium) -0.14 (-0.24, -0.05) HbA1c (UK Biobank) **—** 0.07 (0.04, 0.10) Liability to GDM (Finngen R8) ----0.07 (0.04, 0.10) Liability to T2D (DIAMENTE) 0.05 (0.03, 0.08) -0.2 0.0 0.2 0.4 SD by 1 unit increment of maternal exposure Gestational hypertension OR (95% CI) FG (MAGIC consortium) 1.10 (0.79, 1.54) ISI (MAGIC consortium) 0.80 (0.61, 1.05) HbA1c (UK Biobank) 1.13 (1.03, 1.25) Liability to GDM (Finngen R8) 1.11 (1.02, 1.22) Liability to T2D (DIAMENTE) 1 14 (1 09 1 19) 0.7 0.8 0.6 1.0 2.0 Preeclampsia/eclampsia OR (95% CI) FG (MAGIC consortium) 1.04 (0.80, 1.36) ISI (MAGIC consortium) 0.85 (0.62, 1.18) HbA1c (UK Biobank) 1.10 (1.01, 1.20) Liability to GDM (Finngen R8) 1.10 (1.03, 1.17) Liability to T2D (DIAMENTE) 1.11 (1.06. 1.16) 2.0 0.6 0.7 0.8 1.0

Odds ratio by 1 unit increment of exposure

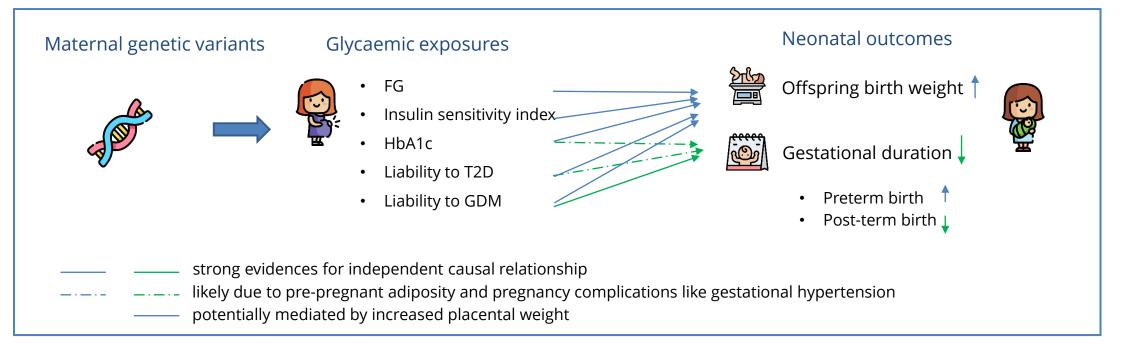
Step 1: Total effect _{E-M}

Results

Analysis 2: Mediation analysis using 2-step MR design

Step 2: Direct effect M-O

Mediator	Outcome	Adjusted for	Beta	95%CI	
Placental weight(SD)	Offspring birthweight (SD)	FG (mmol/L)	0.71	0.40 to 1.02	-
Placental weight(SD)	Offspring birthweight (SD)	ISI (SD)	0.82	0.67 to 0.97	
Placental weight(SD)	Offspring birthweight (SD)	HbA1c (SD)	0.50	0.38 to 0.63	
Placental weight(SD)	Offspring birthweight (SD)	Liability to GDM (log odds)	0.75	0.49 to 1.00	-
Placental weight(SD)	Offspring birthweight (SD)	Liability to T2D (log odds)	0.50	0.40 to 0.60	
Liability to gestational hypertension (log odds)	Offspring birthweight (SD)	HbA1c (SD)	-0.01	-0.05 to 0.03	· · · · · · · · · · · · · · · · · · ·
Liability to gestational hypertension (log odds)	Offspring birthweight (SD)	Liability to GDM (log odds)	-0.04	-0.10 to 0.02	
Liability to gestational hypertension (log odds)	Offspring birthweight (SD)	Liability to T2D (log odds)	0.00	-0.04 to 0.04	· · · · · · · · · · · · · · · · · · ·
Liability to preeclampsia/eclampsia (log odds)	Offspring birthweight (SD)	HbA1c (SD)	0.02	-0.03 to 0.07	
Liability to preeclampsia/eclampsia (log odds)	Offspring birthweight (SD)	Liability to GDM (log odds)	-0.07	-0.16 to 0.02	
Liability to preeclampsia/eclampsia (log odds)	Offspring birthweight (SD)	Liability to T2D (log odds)	0.01	-0.04 to 0.06	
Placental weight(SD)	Gestational duration (days)	HbA1c (SD)	0.95	-0.37 to 2.26	
Placental weight(SD)	Gestational duration (days)	Liability to GDM (log odds)	2.05	-2.83 to 6.94	
Placental weight(SD)	Gestational duration (days)	Liability to T2D (log odds)	0.65	-0.47 to 1.77	
Liability to gestational hypertension (log odds)	Gestational duration (days)	HbA1c (SD)	-0.30	-0.62 to 0.02	
Liability to gestational hypertension (log odds)	Gestational duration (days)	Liability to GDM (log odds)	-0.10	-0.52 to 0.33	
Liability to gestational hypertension (log odds)	Gestational duration (days)	Liability to T2D (log odds)	-0.36	-0.72 to 0.00	
Liability to preeclampsia/eclampsia (log odds)	Gestational duration (days)	HbA1c (SD)	-0.31	-0.69 to 0.07	
Liability to preeclampsia/eclampsia (log odds)	Gestational duration (days)	Liability to GDM (log odds)	-0.03	-0.52 to 0.46	
Liability to preeclampsia/eclampsia (log odds)	Gestational duration (days)	Liability to T2D (log odds)	-0.32	-0.71 to 0.07	


-3 -2 -1 0 1 2 3 4 5 6 7 Effect of mediator on outcome condition on exposure

Identified mediation pathways Total effect E-O Direct effect _{E-O} Indirect effect _{E-M-O} **Proportion attenuated** Exposure (E) Mediators (M) Outcomes (O) Beta (95% Cl) Beta (95% Cl) Beta (95% Cl) Proportion (95% CI) FG (mmol/L) 0.46 (0.32 to 0.61) 0.26 (0.09 to 0.44) 0.20 (0.07 to 0.32) 42.3% (18.9% to 65.6%) ISI (SD) -0.15 (-0.26 to -0.04) -0.03 (-0.13 to 0.06) -0.12 (-0.20 to -0.03) 77.7% (22.7% to 132.7%) Placental weight (SD) HbA1c (SD) Offspring birthweight (SD) 0.11 (0.08 to 0.14) 0.07 (0.04 to 0.10) 0.04 (0.02 to 0.05) 32.8% (17.5% to 48.1%) Liability to GDM (log odds) 0.05 (0.00 to 0.10) 0.05 (0.03 to 0.08) 0.12 (0.08 to 0.16) 44.5% (23.9% to 65.1%) Liability to T2D (log odds) 0.06 (0.04 to 0.08) 0.03 (0.02 to 0.05) 0.03 (0.02 to 0.04) 44.3% (27.3% to 61.3%) Liability to T2D (log odds) Liability to gestational hypertension (log odds) Gestational duration (days) -0.17 (-0.33 to 0.00) -0.05 (-0.10 to 0.00) 20.4% (1.5% to 39.4%) -0.23 (-0.39 to -0.07)

Discussion

GDM and adverse neonatal birth outcomes

Possible mechanism:

Excessive placental growth \rightarrow Increased placental glucose transfer \rightarrow Excessive birth weight (macrosomia) Adverse maternal health conditions & Distension demand posed on the uterus to excessive fetal growth velocity \rightarrow Spontaneous preterm birth

Limitations:

- MR depends on stringent assumptions.
- Cannot assess exposure-mediator interactions.
- Lack of generalizability to other populations
- Limited understanding of long-term offspring health outcomes.

Acknowledgement

GDM and adverse neonatal birth outcomes

Collaborators

Prof. Shiu Lun Au Yeung¹ Dr. Shan Luo¹ Dr. Eric AW Slob² Prof. Hugh Simon Lam³ Prof. Xiu Qiu⁴ Dr. Songying Shen⁴

Affiliations:

- 1. School of Public Health, The University of Hong Kong, Hong Kong SAR, China
- 2. Department of Psychology, Education & Child Studies, Erasmus University Rotterdam, Rotterdam, The Netherlands
- 3. Department of Paediatrics, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
- Division of Birth Cohort Study, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China.

Teammates

Data sources

Published GWAS: (T Laisk. et al. 2020) *Nature communication* (M. C. Honigberg et al. 2023) *Nature Medicine*

Contact information

Baoting HE Research Assistant Professor School of Public Health, University of Hong Kong Phaoting@hku.hk M@AnnabelHE3 inlinkedin.com/in/baoting-he/

