

The seroprevalence of Q fever and its risk factors among occupational high-risk groups in South Korea

Byung Chul Chun, MD. Ph.D, MPH

Computational Epidemiology Lab for Infectious Diseases (CELI) Korea University College of Medicine

* This study was funded by Korean CDC (No: Q2227441)

- a highly infectious zoonotic disease with worldwide prevalence
- caused by the *Coxiella burnetii*, which can infect mammals, birds, reptiles and ticks.
- Human infection with C. burnetii;
- about 40-50% of all cases causes acute disease: flu-like symptom, pneumonia, acute hepatitis; often diagnosed as FUO
- post Q fever fatigue syndrome: 20% of all symptomatic cases
- chronic Q fever (persistent localized infection, i.e. endocarditis, osteomyelitis, chronic hepatitis..): about1-5 % of infected case, within 2-20 years, 20-25% of case fatality rate

C. Burnetti (Science 2007. Jul.2)

Q fever transmission

- *C. burnetii* are found in the birth products (i.e. placenta), urine, feces, and milk of infected animals.
- People get infected by breathing in dust that has been contaminated by them from infected animals, mostly cattle, goat and sheep.
- Direct contact and ingestion of contaminated milk are another route of transmission.
- High risk groups
- Livestock (cattle, goat) and dairy farmers
- abattoir and meat workers
- workers and transporters of livestock, livestock products and waste
- veterinarians, veterinary assistants/nurses

(https://doi.org/10.1016/B978-0-323-50934-3.00048-3)

Q fever cases in Korea, 2006-2023

Notified Q fever Cases in Korea, 2006-2023

- Notified Q fever case are increasing as awareness of Q fever grows since 2015.
- However, Q fever is still a hidden disease in Korea

Aim of the study

- This study aimed
- to estimate the Q fever seroprevalence and
- to identify risk factors among workers engaged in disease control and hygiene of livestock (goat and/or cattle) in Korea (registered members of Livestock Hygiene Control Association, LHCA).

Sampling specimen and disinfection of Livestock and farms

Control of outbreaks of Livestock disease

Sampling and hygiene works in abattoirs

Methods

Study participants

- A random sample of 275 stratified by region out of 890 registered LHCA members
- Blood sampling and Survey
- When: June & July 2023
- What:
- ✓ Blood sampling
 - Serum for Q fever Antibody & blood for PCR test
 - 2nd sampling if any Ab > 16 after 3 week

✓ Questionnaire survey to identify the risk factors: demographic, characteristics of works, frequency of PPE use in detail, risk behaviors, knowledge & attitude on Q fever, past medical history, presence of any symptoms & signs

Methods

Serological analysis

- Ig M, Ig G Ab (both Phase I & II)
- Indirect immunofluorescent Antibody Assay (IFA) was performed (Focus Diagnostics, Inc., Cypress, CA) on serum samples according to the manufacturer's instructions.
- PCR: DNA extraction (QIAamp DNA Blood kit), Q fever Real-time PCR Kit (AttoPlex), sequencing, GenBank (NCBI)
- Statistical analysis
- Descriptive analysis
- Frequency analysis
- Multivariate logistic analysis (seropositive vs. seronegative group)

Diagnostic Criteria for Q fever, Korean CDC

Status	Criteria	Diagnostic test
Acute Q fever, Confirmed	Isolation of C. burnetii or	Isolation
	Specific Ag detection or	Real-time PCR
	 More than 4-fold increase in serum antibodies in the convalescent phase compared to the acute phase (Phase II) 	IFA
Acute Q fever, suspected	 Phase II Ig G ≥1:128 	IFA
Chronic Q fever, Confirmed	• Specific Ig G Ab to phase I antigen is greater than or equal to 1:800 and the titer of phase I is higher than phase II	IFA
Chronic Q fever, Suspected	• Phase I Ig G is greater than or equal to 1:128 and less than 1:800	IFA

(Korean CDC. Guideline for Q fever management & Control. 2022)

Results: Seroprevalence

- Of the 275 participants, 70.1% were male and 37.3% were in their 20s and 30s.
- Seropositive rate of Q fever was 8.4%

Classification	Status	n	%
Seropositive	Acute Q fever, Confirmed*	18	6.5
	Acute Q fever, suspected	3	1.1
	Chronic Q fever, Confirmed	0	0.0
	Chronic Q fever, Suspected	2	0.7
	Subtotal	23	8.4
Seronegative	Undetermined (with any $Ab \ge 16$)	19	6.8
	Negative (all Ab < 16)	233	84.8
	Subtotal	252	91.6

*More than 4-fold increase in serum Ab in the convalescent phase compared to the acute phase (Phase II) *No PCR positive

Results: Risk factors

Multivariate logistic regression analysis on the risk factors of Q fever seropositivity

Variables	Classification	OR	OR 95% CI	
Age (years)	-29	Reference		
	30-39	0.50	0.09	2.92
	40-49	0.55	0.10	3.03
	50-	0.20	0.02	1.76
Sex	Female	Reference		
	Male	0.46	0.17	1.23
Working duration (years)	< 2	Reference		
	≥ 2	5.46	1.60	18.6
Visited known Q fever out-	Yes	15.90	2.04	124
break farms				
Work experience in abattoirs	Yes	0.83	0.21	3.28
for goats				
Knowledge on Q fever	Score*	0.86	0.75	0.98

*Number of correct answers measured by 12 questions

Discussion

- Following this survey, the Korean CDC funded additional research to test the remaining 616 registered workers for Q fever, and the seropositivity rate for all workers surveyed was 7.7%. (preliminary results)
- Acute Q fever (including suspected): 56 cases (6.3%)
- Chronic Q fever (all suspected) : 13 cases (1.5%)
- Also, this year, the Korean CDC and our laboratory began seroepidemiologic surveillance for Q fever among workers on cattle and goat farms for a pilot study.

Conclusion

- Seropositive rate for Q fever among 275 animal hygiene workers was 8.3%.
- Lack of knowledge and poor awareness of the disease was a significant risk factor for Q fever positivity.
- In South Korea, Q fever has been under-recognized, even among high-risk populations, and physicians are less likely to diagnose it.
- It is necessary to increase awareness of Q fever among healthcare providers and the general public, and to increase education on prevention and serosurveillance of Q fever for the occupational high-risk groups.

Supplementary material

Q fever antigenic phase

- C. burnetii also has two distinct antigenic phases, Phase I and Phase II.
- The primary significance of these two phases is that antibodies to phase II antigens are made during the early stages of the infection,
- but antibodies to phase I antigens predominate if the organism persists longer.
- This switch is used to distinguish acute from chronic infections in people

Annual incidence (per 100,000 population) of reported Q fever-Korea, 2016-2021

Annual incidence (per 100,000 population) of reported Q fever-Korea, 2016-2021

Spatial clustering of Q fever, 2018-2019

