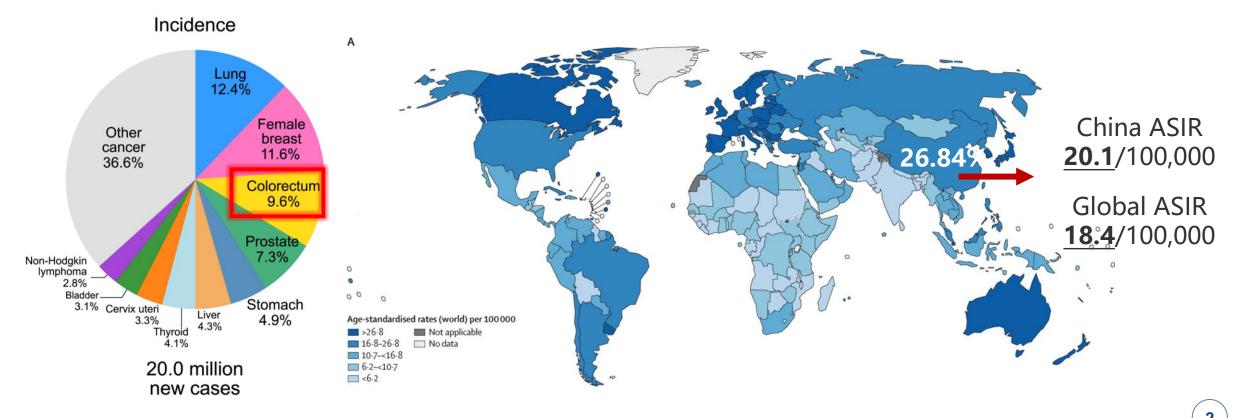
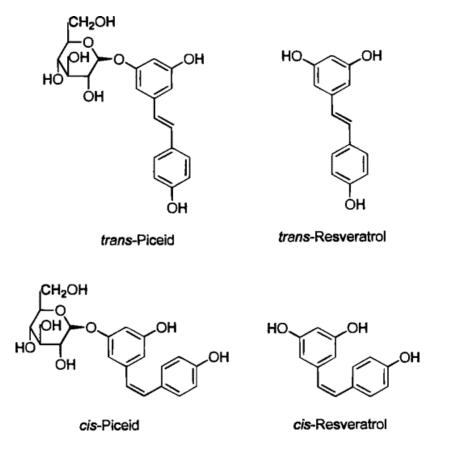
Greater resveratrol intake is associated with a lower risk of colorectal cancer among Chinese population

Prof. Cai-Xia Zhang (presenting author)

School of Public Health, Sun Yat-sen University, Guangzhou, China


Acknowledgements: Natural Science Foundation of China (No. 81973020) Disclosure: No conflict of interests

Prevalence of colorectal cancer


- ✓ In 2022, the number of new CRC cases worldwide reached 1.9 million, ranking third among all cancer
- The number of new cases in China accounted for 26.84%, with an age-standardized incidence rate (ASIR) higher than the global average

[1] Bray F, Laversanne M, Sung H, et al. Global cancer statistics 2022: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 2024;74(3):229-263. doi:10.3322/caac.21834

Study background and purpose	Study methods	Study findings	Conclusion of study

Introduction of resveratrol

- 3, 5, 4'-trihydroxystilbene, a naturally occurring
 polyphenolic compound belonging to the group of stilbenes
- Found in a variety of plant foods: grapes, peanuts, berries, red wine, etc
- Resveratrol has been reported to exert multiple biological activities

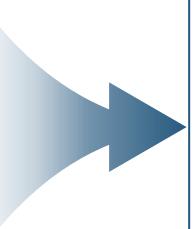
[2] Halls, C.; Yu, O. Potential for metabolic engineering of resveratrol biosynthesis. Trends Biotechnol 2008, 26, 77-81.[3] Regev-Shoshani, G.; Shoseyov, O.; Bilkis, I.; Kerem, Z. Glycosylation of resveratrol protects it from enzymic oxidation. Biochem J 2003, 374, 157-163.

Current status of research

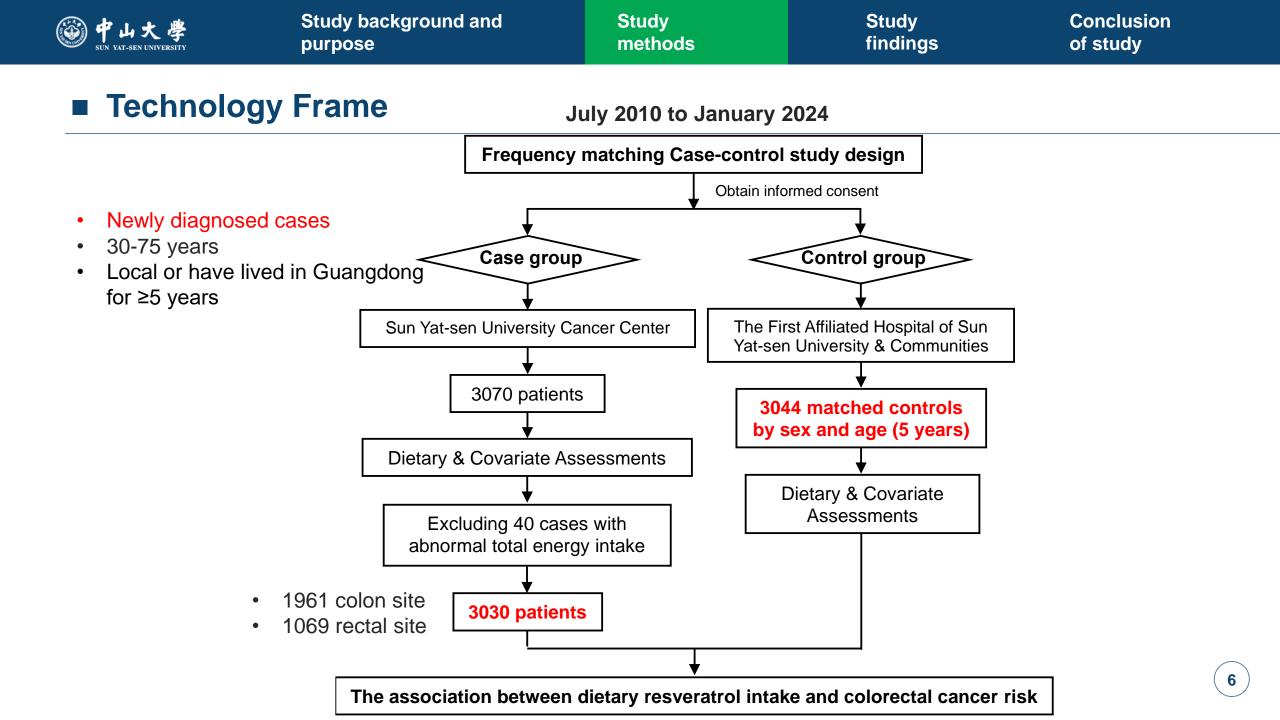
Animal experiments

• In *Apc^{Min}* mice receiving a high-fat diet, dietary achievable doses of resveratrol halt tumor progression in mice through induction of AMPK and senescence and that these effects translate to human tissue

Population epidemiological studies

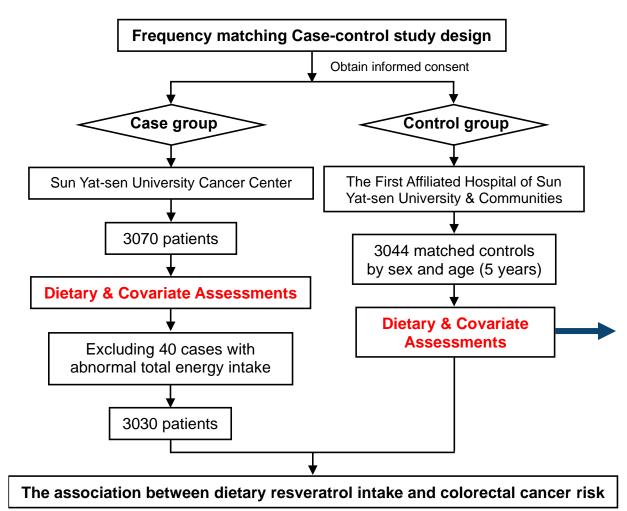

• Two previous nested case-control studies concluded that prediagnostic plasma resveratrol levels were not associated with colon cancer risk

[6] Cai H, et al. (2015). Cancer chemoprevention: Evidence of a nonlinear dose response for the protective effects of resveratrol in humans and mice. Sci Transl Med.
[7] Murphy, et al. (2018). A prospective evaluation of plasma polyphenol levels and colon cancer risk. International Journal of Cancer.
[8] Mori, N., et al. (2022). Prediagnostic plasma polyphenol concentrations and colon cancer risk: The JPHC nested case-control study. Clinical Nutrition.


デーム大学 SUN YAT-SEN UNIVERSITY SUN YAT-SEN UNIVERSITY SUN YAT-SEN UNIVERSITY SUN YAT-SEN UNIVERSITY	Study	Study	Conclusion
	methods	findings	of study

Purpose of the study

- The beneficial effects of dietary resveratrol on colorectal cancer have yet to be confirmed in population-based studies
- Habitual dietary intake is likely to better reflect long-term exposure compared to biomarkers



In this hospital-based largescale case-control study, we
aimed to investigate the
association between dietary
resveratrol intake and the risk
of colorectal cancer

Study background and purpose	Study methods	Study findings	Conclusion of study	

Face-to-face interviews

- Dietary data: Use a validated FFQ to collect dietary information from the previous year
 Energy and resveratrol intake: Based on the Chinese Food Composition Table (2002) and the Chinese Food Composition Table Standard Edition
- Other covariates

谷中山大 慶	Study background and	Study	Study	Conclusion
伊山大学 SUN YAT-SEN UNIVERSITY	purpose	methods	findings	of study

Statistical Analysis

Data reprocessing

- Dietary intakes were logtransformed and adjusted
 for total energy using the residual method
- Study subjects were divided into five groups by sex

Association analysis

- Multivariable unconditional logistic regression models: estimate the odds ratios and 95% confidence intervals
- Sex-stratified analysis
- Subgroup analysis of cancer sites
- Sensitivity analysis

Nonlinear relationship

 Restricted cubic spline (RCS) analysis

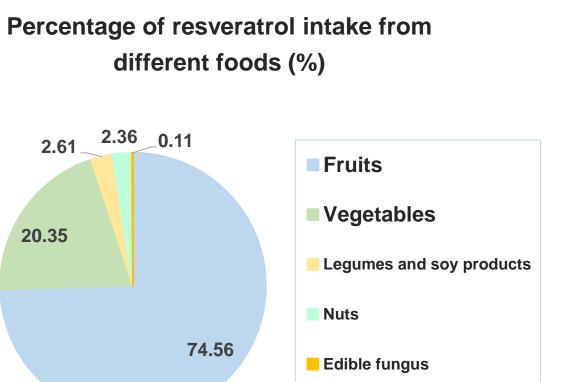
谷中小牛	Study background and	Study	Study	Conclusion
	purpose	methods	findings	of study

Characteristics and selected risk factors

Characteristics	Cases (<i>n</i> =3030)	Controls (<i>n</i> =3044)	Р
Age (years), mean ± SD	56.92 ± 10.19	56.87 ± 9.79	0.727
Men, <i>n</i> (%)	1716 (56.63)	1723 (56.60)	0.981
Married , <i>n</i> (%)	2874 (94.85)	2774 (91.13)	<0.001
Rural, <i>n</i> (%)	1085 (35.81)	692 (22.73)	<0.001
Education, <i>n</i> (%)			<0.001
Primary school or below	928 (30.63)	673 (22.11)	
Middle school	876 (28.91)	783 (25.72)	
High school/technical school	725 (23.93)	827 (27.17)	
College or above	501 (16.53)	758 (24.90)	
Unknown	0 (0.00)	3 (0.10)	
Occupation, <i>n</i> (%)			0.006
Administrator/other white-collar	428 (14.13)	520 (17.08)	
Blue-collar worker	697 (23.00)	682 (22.40)	
Farmer/others	1905 (62.87)	1842 (60.51)	
Household income (Yuan/month), n (%)			<0.001
<2000	405 (13.37)	404 (13.27)	
2001–5000	984 (32.48)	1203 (39.52)	
5001-8000	891 (29.41)	894 (29.37)	
>8001	750 (24.75)	543 (17.84)	

• The mean age of participants was 57 years, and 57% were male

	Study background and	Study	Study	Conclusion
中山大学 SUN YAT-SEN UNIVERSITY	purpose	methods	findings	of study

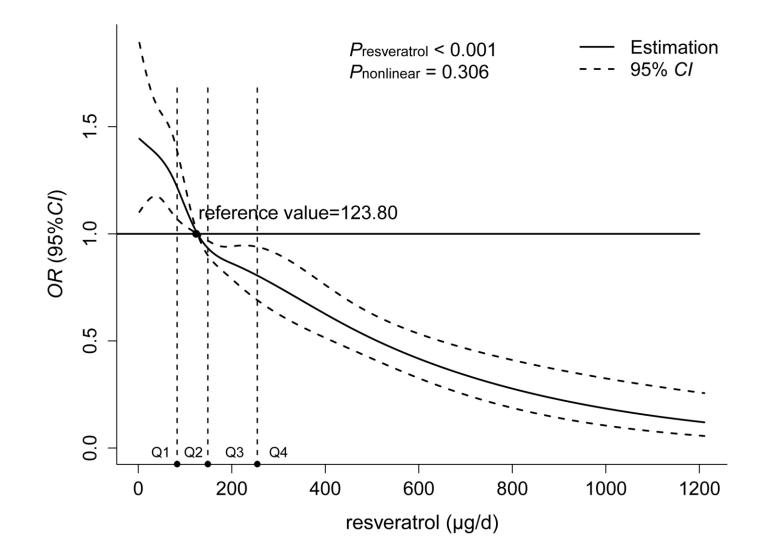

Characteristics and selected risk factors

Characteristics	Cases (<i>n</i> =3030)	Controls (<i>n</i> =3044)	Р
Ever smokers, n (%)	1182 (39.01)	934 (30.68)	<0.001
Passive smoking, <i>n</i> (%)	830 (27.39)	895 (29.40)	0.082
Regular drinkers, n (%)	546 (18.02)	433 (14.22)	<0.001
Occupational activity, n (%)			<0.001
Nonworking	365 (12.05)	1054 (34.63)	
Sedentary	852 (28.12)	615 (20.20)	
Light	845 (27.89)	727 (23.88)	
Moderate	443 (14.62)	291 (9.56)	
Неаvy	525 (17.33)	357 (11.73)	
MET (h/week), median ($P_{25} - P_{75}$)	27.00 (8.31–52.50)	34.44 (16.00–56.00)	<0.001
BMI (kg/m²), mean ± SD	23.40 ± 3.31	23.56 ± 3.16	0.030
Family history of cancer in first-degree relatives, $n(\%)$	455 (15.02)	255 (8.38)	<0.001

ТИЛГ	dy background and	Study	Study	Conclusion
	bose	methods	findings	of study

Daily resveratrol intakes

Dietary Intakes	Cases (<i>n</i> =3030)	Controls (<i>n</i> =3044)
Energy (kcal/day)	1469.91 (1188.86–1808.91)	1551.31 (1261.89–1953.65)
Vegetables (g/day)	388.17 (285.52–516.77)	406.78 (300.98–531.71)
Fruits (g/day)	86.81 (42.39–151.74)	119.28 (65.53–187.48)
Red meat (g/day)	110.84 (73.66–154.93)	91.11 (57.11–131.72)
White meat (g/day)	74.92 (41.58–126.39)	84.23 (49.85–134.08)
Eggs and milk (g/day)	29.06 (12.91–65.40)	51.56 (21.86–126.50)
Legumes and soy products (g/day)	17.42 (6.63–36.62)	19.71 (7.88–42.32)
Edible fungus (g/day)	3.32 (1.19–7.48)	4.61 (1.79–10.10)
Nuts (g/day)	0.85 (0.11–2.94)	1.53 (0.33–5.38)
Resveratrol (µg/day)	109.57 (60.01–185.27)	149.81 (83.77–260.06)


Negative association between dietary resveratrol and CRC risk

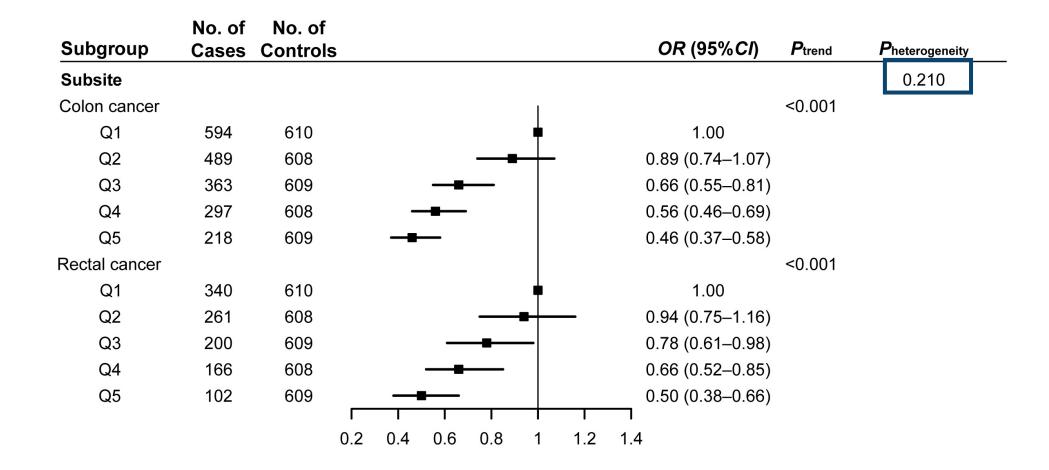
	Q1	Q2	Q3	Q4	Q5	\pmb{P}_{trend}
Median (µg/day)	42.35	95.35	147.71	229.62	424.22	
No. of cases/controls	934/610	747/608	566/609	465/608	318/609	
Model1	1.00	0.80 (0.69–0.93)	0.61 (0.52–0.71)	0.50 (0.43–0.59)	0.34 (0.29–0.40)	<0.001
Model2	1.00	0.86 (0.73–1.01)	0.65 (0.55–0.77)	0.54 (0.45–0.64)	0.41 (0.34–0.50)	<0.001
Model3	1.00	0.90 (0.76–1.06)	0.70 (0.59–0.83)	0.59 (0.49–0.71)	0.47 (0.39–0.57)	<0.001

• After adjusting for variables, the highest quintile of resveratrol intake was associated with a 53% reduction in CRC risk compared to the lowest quintile

☆ 山 ★ 巻	Study background and	Study	Study	Conclusion
じ サム大学 SUN YAT-SEN UNIVERSITY	purpose	methods	findings	of study

The linear dose-response relationship

13


Study background and purpose	Study methods	Study findings	Conclusion of study

Sex-stratified analysis

	No. of	No. of										
Subgroup	Cases	Controls	6							OR (95%Cl)	P trend	P interaction
Sex												0.034
Men											<0.001	
Q1	548	345					•			1.00		
Q2	477	344				_			— 1	1.06 (0.85–1.34)		
Q3	284	345							C	0.66 (0.52–0.85)		
Q4	254	344		-					C	0.59 (0.46–0.77)		
Q5	153	345			 				C	0.47 (0.35–0.62)		
Women											<0.001	
Q1	386	265								1.00		
Q2	270	264				-	-		C	0.75 (0.58–0.96)		
Q3	282	264			_	-			C	0.77 (0.59–0.99)		
Q4	211	264			-				C	0.62 (0.48–0.82)		
Q5	165	264			-	•			(0.51 (0.39–0.68)		
				1	I	1		I		· · ·		
			0.2	0.4	0.6	0.8	1	1.2	1.4			

じ サム大学 SUN YAT-SEN UNIVERSITY	Study background and	Study	Conclusion
	purpose	methods	findings

Subgroup analysis of cancer sites

中山大學 SUN YAT-SEN UNIVERSITY	Study background and purpose	Study methods	Study findings	Conclusion of study

Conclusion of study

This study is the first to observe the association between dietary resveratrol intake and CRC risk.

Greater habitual intake of resveratrol is associated with a dose-response reduction in CRC risk in Chinese population.

The primary contributors to this association were resveratrol found in fruits and edible fungi.

THANKS

Respondent : Cai-xia Zhang, Professor