Prevalence and progression of chronic kidney disease among adults undergoing creatinine testing in South African public healthcare facilities: a study leveraging data from South Africa's National Health Laboratory Service (NHLS)

Emma Kileel

Boston University School of Public Health, United States

26 September 2024

Disclosures: none

Motivation

- Chronic kidney disease (CKD) is a growing public health concern
- Wide variation in CKD prevalence estimates in existing literature
 - Prevalence in South African adults is estimated to be between 5.9% -28.9%
- CKD often goes undetected until critical advanced stages
- Knowledge of CKD burden could increase awareness and improve early detection, slowing progression to end-stage kidney disease

Objective

We sought to **estimate CKD prevalence** and **assess disease progression** among adult patients receiving serum creatinine tests at a government sector hospital or clinic in South Africa using data from South Africa's National Health Laboratory Service (NHLS) database.

Methods

NHLS cohort description

- South Africa's NHLS serves as the sole provider of laboratory services for the public health system, catering to over 80% of the population across all provinces
- Using a novel data linkage method, NHLS data was expanded to encompass all HIV, TB, and non-communicable disease laboratory tests, creating the 'NHLS Multi-morbidity Cohort'
- The NHLS Multi-morbidity Cohort encompasses over 68 million laboratory tests from >30 million individuals between 1 April 2004 and 31 March 2017

Study population

- Patients aged 18-85 years with a first serum creatinine laboratory test performed at a government sector hospital or clinic between 1 January 2012 and 1 January 2016
- People living with **HIV** (PLWH) were those with an HIV-associated test (CD4 count, viral load, ELISA, etc.)
- People with acute **TB** infection were those with a positive TBassociated test (i.e., culture, smear, GeneXpert, etc)
- People living with lab-diagnosed diabetes were those with a fasting glucose, random glucose, or HbA1c above the diagnostic cut-off

CKD definitions

- CKD: two eGFR (estimated glomerular filtrate rate) measurements < 60 mL/min/1.73m² at least 90 days but no more than 12 months apart
 - eGFR was calculated using the 2009 CKD epi equation without adjusting for race
- Stages of kidney disease were classified as:
 - Stage 3a: eGFR 45-59 mL/min/1.73m²
 - Stage 3b: eGFR 30-44 mL/min/1.73m²
 - Stage 4: eGFR 15-29 mL/min/1.73m²
 - Stage 5 (end stage): < 15 mL/min/1.73m²
- CKD progression: a drop in disease stage accompanied by at least a 25% reduction in eGFR from baseline

Statistical analyses

- We calculated person-time (in years) by measuring the average time between patients' first and last creatinine measurements
- Crude rates of CKD progression were calculated by biological sex, age, diabetes status, HIV, and TB status
- Cox proportional hazard regression was used to calculate crude and adjusted hazard ratios (HRs) and corresponding survival curves

Results

CKD prevalence

CKD status	N (Total=6,106,521)ª	%	
Normal ^b	5,607,287	91.8	
CKD ^c	88,273	1.5	
RI event with no follow-up lab within 3-12 months ^d	142,104	2.3	
RI event with follow-up lab < 60 L/min/1.73m ² within 0-3 months ^d	152,320	2.5	
RI event with follow-up lab \ge 60 L/min/1.73m ^{2d}	116,537	1.9	

^aTotal N represents all individuals aged 18-85 years with a serum creatinine laboratory test performed at a government sector hospital or clinic between January 1, 2012, and January 1, 2016.

^bPatients were classified as having 'Normal' CKD status if their first eGFR measure was \geq 60 mL/min/1.73m².

°CKD defined as two eGFR measurements <60 mL/min/1.73m² at least 90 days but no more than 12 months apart.

^dRenal Insufficiency (RI) event defined as having an eGFR measure < 60 L/min/1.73m².

CKD prevalence

CKD status	N (Total=6,106,521)ª	%	
Normal ^b	5,607,287	91.8	
CKD℃	88,273	1.5	
RI event with no follow-up lab within 3-12 months ^d	142,104	2.3	
RI event with follow-up lab < 60 L/min/1.73m ² within 0-3 months ^d	152,320 2.5		
RI event with follow-up lab ≥ 60 L/min/1.73m ^{2d}	116,537 1.9		

^aTotal N represents all individuals aged 18-85 years with a serum creatinine laboratory test performed at a government sector hospital or clinic between January 1, 2012, and January 1, 2016.

^bPatients were classified as having 'Normal' CKD status if their first eGFR measure was \geq 60 mL/min/1.73m².

°CKD defined as two eGFR measurements <60 mL/min/1.73m² at least 90 days but no more than 12 months apart.

^dRenal Insufficiency (RI) event defined as having an eGFR measure < 60 L/min/1.73m².

Cohort characteristics

63% female

71% ≥ 50 years

45% diagnosed at PHC

13% living with diabetes

17% living with HIV

CKD stages

Stage 3a (eGFR 45-59 mL/min/1.73m²) 33,770 (44%) Stage 3b (eGFR 30-44 mL/min/1.73m²) 25,462 (29%) Stage 4 (eGFR 15-29 mL/min/1.73m²) 14,055 (16%) Stage 5 (eGFR <15 mL/min/1.73m²) 9986 (11%)

Stages of Chronic Kidney Disease

CKD progression

CKD progression by biological sex

CKD progression by diabetes status

*Adjusted for age, biological sex, and HIV/TB status.

PLWOD=people living without diabetes PLWD=people living with diabetes

CKD progression by age group

Calculated among those with a diabetes lab (N=22,025).

*Adjusted for biological sex, diabetes status, and HIV/TB status.

CKD progression by HIV, and TB status

HIV/TB status	N (%) progresse d	Total person time (years)	Rate per 100 person- years (95% CI)	Crude HR (95% Cl)	Adjusted HR* (95% CI)
HIV-/TB-	17,897 (29.7%)	150,875	11.9 (11.7-12.0)	ref.	ref.
HIV+/TB-	3761 (29.2%)	31,007	12.1 (11.7-12.5)	1.03 (1.00-1.07)	1.04 (0.97-1.11)
HIV-/TB+	1179 (29.0%)	10,297	11.4 (10.8-12.1)	0.97 (0.91-1.03)	0.97 (0.87-1.09)
HIV+/TB+	304 (27.5%)	2719	11.2 (10.0-12.5)	0.99 (0.88-1.11)	0.97 (0.78-1.19)

Calculated among those with a diabetes lab (N=22,025).

*Adjusted for age, biological sex, and diabetes status.

Limitations

Strengths

- National cohort
- Use of two eGFR measures to diagnose CKD minimizes misclassification of AKI (acute kidney injury)

Limitations

- Limited time frame (2012-2017)
- Selection bias
- Uncontrolled confounding

Conclusions

- Our study underlines the significance of CKD prevalence and risk of disease progression in South Africa, emphasising its association with diabetes
- Regular monitoring of kidney function, particularly for high-risk groups like those with type 2 diabetes and the elderly, is crucial to ensure early detection of CKD and prevent CKD progression

Co-authors: Alana Brennan, Siyabonga Khoza, Nigel Crowther, Jacob Bor, Matthew Fox, Sydney Rosen, Patricia Hibberd, Frederick Raal, Kamy Chetty, Koleka Mlisana, Jaya George

