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Validation with a non-representative 
gold standard: methods for 
administrative data linkage



Validation: a core problem in epidemiology

In epidemiology, we often want to make predictions or inferences on things we 
don’t see using data that we do see.

We can evaluate the model performance (Sen, Spec, PPV, NPV) by comparing it 
against a gold standard.

Predictors 

(HbA1c, etc.)
Model

Outcome 

(Diabetes)



Validation: a core problem in record linkage
Records in administrative databases often contain data entry errors
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Finding gold standard data can be challenging

Resource/cost-intensive

Ethical concerns

Confidentiality concerns

Noise/bias

Non-representative data



Obtaining a gold standard in record linkage

1. Manual review 
      (+) Can be done on a representative sample

(−) Expensive, not scalable, reviewer bias*

*may lead to bias in estimated SEN and PPV
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Problem:
We don’t know the ground truth for 

every observation



Bias when ground truth is non-representative 

Subset of records with known ground truth (NATL ID) may be:
• More accurately recorded
• Higher representation in:

• very low scores (certain non-matches)
• Very high scores (certain matches)



Correcting for bias due to sample non-representativeness

A: True positives 
B: False positives 
C: False negatives
D: True negatives

We can express Sen and PPV using distributions from the linkage
• The distribution of similarity scores, 𝑓(𝑆)
• The probability of being a true match conditional on the similarity score 𝑆, 𝑃(𝑚𝑎𝑡𝑐ℎ|𝑆)
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We can estimate PPV and SEN without bias by reweighting the data
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Simulation study

• Construct simulated data as follows:
• Have lower proportion of missing IDs for very low/very high 𝑆
• IDs missing at random conditional on 𝑆



Simulation study

SEN (%) PPV (%)
SEN difference 

from ground 
truth (%)

PPV difference 
from ground 

truth (%)

Ground truth data 54.6 99.8 - -

50% missing national ID, 
unadjusted

66.1 99.9 +11.5 +0.1

50% missing national ID, bias-
corrected

57.3 99.7 +2.7 -0.1

In simulated data, applying bias-correction approach reduces bias 



Application



Application: Africa Health Research Institute 
(AHRI) clinical and laboratory HIV databases

• Link records from multiple non-deduplicated datasets for HIV care 
monitoring in South Africa [1, 2]: 
• Tier.Net, NHLS laboratory database, HDSS, AHRILink

• National ID information available for:
• 71% of TIER
• 23% of NHLS
• 40% of HDSS
• 21% of AHRILink

[1] Bor J, MacLeod W, Oleinik K, Potter J, Brennan AT, Candy S, et al. Building a national HIV cohort from routine laboratory data: Probabilistic record-linkage with graphs. bioRxiv. 2018; 
[2] MacLeod WB, Bor J, Candy S, Maskew M, Fox MP, Bulekova K, et al. Cohort profile: the South African National Health Laboratory Service (NHLS) National HIV Cohort. BMJ Open [Internet]. 
2022 Oct 1;12(10):e066671. Available from: http://bmjopen.bmj.com/content/12/10/e066671.abstract



Comparison between types of record pairs

Record pairs with national ID are less likely to be missing for very low and very 
high total similarity scores



Validation performance metrics

Both SEN and PPV are overestimated if we do not correct for bias

46% underestimate in the undermatching error rate

Bias correction SEN (%) PPV (%)
Undermatch rate 

(1-SEN)
Overmatch rate 

(1-PPV)

No bias correction 94.3 96.8 5.7 3.2

With weights correcting for 
bias due to missing national IDs

91.7 94.8 8.3 5.2

3.2 − 5.2

3.2
= −63%

5.7 − 8.3

5.7
= −46%

Failure to correct for bias would have led to:

63% underestimate in the overmatching error rate



• Validation using a non-representative gold standard creates a potential 
for a cost-effective, easy to implement, and scalable procedure

• Failure to correct for bias will result in incorrect estimation of 
performance metrics

• Approach can be generalized to any misclassification problem involving 
a non-representative gold standard

In summary,
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