

Methodology for monitoring data quality in cluster studies: application to the TIMCI project

Hélène Langet¹, Jean Augustin D. Tine, Samwel Lwambura, Silvia Cicconi, Charles Festo, Fenella Beynon, Anmol Jacob, Francis Njiri, Fabian Schär, Abdallah Mkopi, Kevin Ngari, Gillian Levine, Tracy R. Glass, for the TIMCI consortium

Introduction

Methodology

TIMCI project

Results (application to TIMCI)

Conclusion

ISO 9001-2015 certified

Introduction

Cluster studies

• individual observations nested in a hierarchical structure (clusters)¹

 very common in implementation research, including pragmatic studies², to evaluate interventions in real world settings

¹Galbraith S, Daniel JA, Vissel B. "A study of clustered data and approaches to its analysis." *J Neurosci. 2010 Aug 11;30(32):10601-8*. <u>https://doi.org/10.1523/JNEUROSCI.0362-10.2010</u> ²Weinfurt K. "What Is a Pragmatic Clinical Trial?: Why Are We Talking about Pragmatic Trials?" *Rethinking Clinical Trials: A Living Textbook of Pragmatic Clinical Trials 2024. Bethesda, MD: NIH Pragmatic Trials Collaboratory*. <u>https://doi.org/10.28929/089</u>.

Introduction

Data quality in cluster studies

- essential to ensure valid and reliable research findings
- variability across clusters

e.g., natural epidemiological variations, human factors (individual practices)

 specific challenges associated with real-world data sources, including adaptation of data collectors to practices within their cluster based on their understanding

Need for a practical methodology for monitoring data quality in cluster studies

NO 9001 2015 certified

Methodology

Cluster- time partitioning

Full dataset
$$\mathcal{D} = \begin{bmatrix} C_1 & t_1 & x_1 \\ \cdots & \cdots & \cdots \\ C_K & t_M & x_N \end{bmatrix}$$

Unitaid

IFAKARA HEALTH INSTITUTE

N observations $x_{i=1,...,N}$ K clusters $C_{k=1,...,K}$ M time periods $t_{m=1,...,M}$

Partition $\mathcal{D}_{\mathcal{C}_k, t_m} = \{x_i | \operatorname{cluster}(x_i) \in \mathcal{C}_k \cap \operatorname{time}(x_i) \in t_m\}$

	t_1	t_2	 t _M
<i>C</i> ₁	$\mathcal{D}_{\mathcal{C}_1,t_1}$	$\mathcal{D}_{\mathcal{C}_1,t_2}$	 $\mathcal{D}_{\mathcal{C}_1, t_M}$
<i>C</i> ₂	$\mathcal{D}_{\mathcal{C}_2,t_1}$	$\mathcal{D}_{\mathcal{C}_2,t_2}$	 $\mathcal{D}_{\mathcal{C}_2, t_M}$
C _K	$\mathcal{D}_{\mathcal{C}_{K},t_{1}}$	$\mathcal{D}_{\mathcal{C}_{K},t_{2}}$	 $\mathcal{D}_{\mathcal{C}_{K},t_{M}}$

Methodology

Statistical dispersion

Quality as a measure of **dispersion** of **clustered summary statistics**

Absolute modified z-scores

$$z_{C_k,t_m} = 0.6745 \times \frac{\left| \mathbf{X}_{C_k,t_m} - \widetilde{\mathbf{X}}_{t_m} \right|}{\mathbf{MAD}_{t_m}}$$

Iglewicz B, Hoaglin D. "How to Detect and Handle Outliers". *The ASQC Basic References in Quality Control: Statistical Techniques. 1993. In: Mykytka, E.F., Eds., How to Detect and Handle Outliers, ASQC Quality Press, Milwaukee, Vol. 16.*

unisantė

Unitaid

IFAKARA HEALTH INSTITUT

$$X_{\mathcal{C}_k, t_m}$$
 summary statistics for observations x_i in partition $\mathcal{D}_{\mathcal{C}_k, t_m}$

- $\widetilde{\mathbf{X}}_{t_m}$ median of summary statistics X_{C_k,t_m} across all clusters for time period t_m
- $\begin{array}{ll} MAD_{t_m} & \text{median of absolute deviation} \\ & \left| X_{C_k,t_m} \widetilde{X}_{t_m} \right| \text{ across all clusters for time} \\ & \text{period } t_m \end{array}$

Methodology

Dispersion visualisation

 Heatmap of 10 clusters with highest modified z-scores

outliers $\Rightarrow z_{C_k,t_m} \ge 3.5$

• Time series of patterns of summary statistics by individual clusters

Iglewicz B, Hoaglin D. "How to Detect and Handle Outliers". *The ASQC Basic References in Quality Control: Statistical Techniques. 1993. In: Mykytka, E.F., Eds., How to Detect and Handle Outliers, ASQC Quality Press, Milwaukee, Vol. 16.*

7 Unitaid

IFAKARA HEALTH INSTITUTE

unisantė

TIMCI project

Project overview

TANZANIA

KENYA

: IN IFAKARA HEALTH INSTITUTE

Unitaid

unisantė

210 clusters (facilities) 209'269 children 0-59 months

- A pragmatic cluster RCT
 - <u>– NCT04910750</u>
 - 106 facilities in India (9 months)
 - 66 facilities in Tanzania (12 months)
- A quasi-experimental pre-post study
 - <u>NCT05065320</u>
 - 19 facilities in Kenya (15 months)
 - 20 facilities in Senegal (18 months)

Beynon F, Langet H, Bohle LF et al. "The Tools for Integrated Management of Childhood Illness (TIMCI) study protocol: a multi-country mixed-method evaluation of pulse oximetry and clinical decision support algorithms." *Glob Health Action. 2024 Dec 31;17(1):2326253*. https://doi.org/10.1080/16549716.2024.2326253

TimCl Tools for Integrated Management of Childhood Illness

TIMCI project

ΤΙΜΟΙ

Tools for Integrated Management of Childhood Illness

Results (application to TIMCI)

Review of a common event with natural epidemiological variations

Pre-consultation Variable: cough Source: caregiver Statistics: frequency

Results (application to TIMCI)

Review of a rare event

Post-consultation Variable: referral Source: caregiver Statistics: frequency

Results (application to TIMCI)

Review of a measurement

Post-consultation Variable: respiratory rate Source: register Statistics: median

Conclusion

Conclusion

- Targeted **identification** and **investigation** of potential data quality issues
- Optimization of the quality by adopting the approach early on and proactively implementing corrective measures throughout the data acquisition process
- Generation of **new knowledge**: findings can further inform the analysis and interpretation
- Can be adapted to integrate other statistics

I IFAKARA HEALTH INSTITUT

Unitaid

unisanté

Conclusion

Acknowledgements

The TIMCI consortium thanks all the research assistants, participants, caregivers, healthcare providers, and Ministries of Health. This work was only possible through the collaboration between all institutions and individuals listed below (alphabetical order):

Ifakara Health Institute: PI: Prof. Honorati Masanja Research Lead: Dr. Grace Mhalu

ISO 9001:2015 certified **IFAKARA HEALTH INSTITUTE** research | training | services

Charles Festo, Samwel Lwambura, John Maiba, Susan Makawia, Irene Masanja⁺, Naomi Masanja, Abdallah Mkopi, Robert Moshiro, Ibrahim Mtebene

King George Medical University:

Research Lead: Dr. Divas Kumar Girdhar Agarwal, Vineela Bandi, Anmol Jacob, Tuhina Rastogi, Mansi

PATH:

Project Lead: Mike Ruffo

PI: Prof. Shally Awasthi

Maymouna Ba, Method Bulo, Zach Clemence, Ray Cummings, Mira Emanuel-Fabula, Kanishka Gupta, Claudia Harner-Jay, Bonnie Keith, Tanya Lalwani, Andolo Miheso, Deusdedit Mjungu, Olgah Odek, Dickens Oviedo, Elena Pantjushenko, Manjari Quintanar Solares, Julie Rajaratnam, Kovid Sharma, Janet Shauri, Megan Shawcross, Lisa Smith, Helen Storey

Swiss TPH:

PI: Prof. Kaspar Wyss

Fenella Beynon, Leah F. Bohle, Silvia Cicconi, Lisa Cleveley, Tracy Glass, Kristina Keitel, Gaurav Kumar, Hélène Langet, Gillian Levine, Lena Matata, Martin Norris, Vânia Oliveira, Anja Orschulko, Elisabeth Reus, Fabian Schär

Funded by Unitaid 2019-35-TIMC

Unisanté:

PI: Prof Valérie D'Acremont

Vincent Faivre, Gregory Martin, Sylvain Schaufelberger, Rainer Tan, Julian Thabard, Alan Vonlanthen

14

Université Cheikh Anta Diop:

PI: Prof. Ousmane Ndiave Research Lead: Prof. Papa Moctar Faye Ndève Marème Sougou, Aliou Thiongane, Jean-Augustin Diégane Tine

University of Nairobi:

PI: Prof. James Machoki Research Lead: Francis Niiri Peter Arimi, Rose Kosgei, Mercy Mugo, Kevin Ngari, Mariah Ngutu

University of Waterloo / Cost & Cost-effectiveness:

PI: Prof. Susan Horton Michael Onah

titut Tropical et de Santé Publique Suis

unisantė

weizerisches Tropen- und Public Health-Instit

