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G computation is useful

 Method to estimate marginal counterfactual outcome 
distributions while accounting for confounding.
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G computation with single time-point outcomes with no missing data 
is straightforward

1. Fit a parametric model for the outcome conditional on exposure 
and covariates

2. Set exposure to desired level

3. Use estimated coefficients from step 1 to predict counterfactual 
outcomes under each exposure level of interest. 
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G computation requires more steps when outcome is a survival time 
with right censoring.
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G-computation with pooled logistic regression 

Advantages: easily accounts for confounding and informative 
censoring affected by time-updated covariates

Disadvantages: relies on choices about the number of time intervals 
and potentially restrictive parametric models, vulnerable to bias due 
to discretization of time and model misspecification.

Moreover, requires onerous dataset expansions, which create 
opportunities for computational issues and user error.
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The Breslow g-computation estimator avoids these disadvantages.

• No need to expand dataset
• Continuous time
• Semiparametric (does not require parametric model for baseline 
hazard function)
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Simulation results
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Example: 3-drug vs 2-drug ART for people with HIV

Overall (N=978) 2-drug (n = 579) 3-drug (n = 399)
Characteristic n % n % n %

Age > 40 384 39 232 40 152 38
Black race 286 29 165 28 121 30
Hispanic ethnicity 173 18 106 18 67 17
Injection drug use 156 16 93 16 63 16
CD4<100 699 71 364 63 335 84
Male sex 813 83 485 84 328 82

Table. Modified version of the ACTG 320 trial, distorted to induce confounding.
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Figure 5. Estimated risk functions (x 100) under 2-drug (solid lines) and 3-drug (dotted lines) 
antiretroviral therapy regimens in a modified version of the ACTG 320 data using the pooled 
logistic g-computation estimator with time discretized to the month (black lines) and the 
Breslow g-computation estimator (grey lines). 
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Summary

1. G-computation is useful

2. Standard “pooled logistic” approach is ideal for settings with 
time-varying covariates, but also subject to disadvantages
1. Discretization of time
2. Parametric models
3. Need to expand dataset

3. Breslow g-computation removes these disadvantages in settings 
with time-fixed exposure and a survival outcome.
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Data and code available at
 

https://github.com/edwardsjk/semiparametric_gcomp
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