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G computation is useful

Method to estimate marginal counterfactual outcome
distributions while accounting for confounding.
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women), the observed 18-years stroke risk was 5.9%. A feasible joint hypothetical intervention on six lifestyle and
metabolic risk factors would reduce the 18-year stroke risk by 32% (95% confidence interval 16, 44) A combination of
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been mediated by leaving work. We found that when the
current OSHA workplace standard of <0.1 asbestos fiber per
milliliter was applied throughout the follow-up period, there
was a notable reduction in lung cancer mortality compared
with the observed exposure.
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G computation with single time-point outcomes with no missing data
s straightforward

1. Fit a parametric model for the outcome conditional on exposure
and covariates

3. Use estimated coefficients from step 1 to predict counterfactual
outcomes under each exposure level of interest.
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G computation requires more steps when outcome is a survival time
with right censoring.
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Algorithm Example Output

1. Expand dataset to have 1 record per person period
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Example Output

Algorithm
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2. Estimate association bewteen W, A, and outcome at
each time £ using pooled logistic regression

logit[P (05, = 1[T" > k — 1, W;, Ai; 0)] = 6 = {0.06,0.27, —0.83, —0.30, —0.75, —0.25, —17.7, —17.4}
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3. Predict discrete-time hazards for each individual under
plan a at all time points.

1/{1+ eXp[—(éo + 919(Wi) + 0za + é3f(k) + é4af(k))]}

Output: u;(k,a, W;; é)

©
~

Discrete—time hazard
o
N

0.0+

Time

o

- O 0O NO U~ WOWON =



4. Use i(k,a, Wi ) to estimate cumulative outcome
probability at each time point
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5. Average predicted individual outcomes under

plan a across individuals to estimate risk 7 (¢)
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G-computation with pooled logistic regression

Advantages: easily accounts for confounding and informative
censoring affected by time-updated covariates

Disadvantages: relies on choices about the number of time intervals

and potentially restrictive parametric models, vulnerable to bias due
to discretization of time and model misspecification.

Moreover, requires onerous dataset expansions, which create
opportunities for computational issues and user error.
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The Breslow g-computation estimator avoids these disadvantages.

* No need to expand dataset
» Continuous time

« Semiparametric (does not require parametric model for baseline
hazard function)
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Algorithm

1. Estimate association between |1’ and outcome
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Algorithm

1. Estimate association between 117 and outcome
among those with A;= a using a Cox model
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2. Estimate cumulative baseline hazard function
among those with 4;= a
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3. Estimate cumulative outcome probability under
plan a for all participants at each time point
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4. Average predicted individual outcomes under

plan a to estimate risk F%(t) at each time point
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Simulation results

Bias at 1 year
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Example: 3-drug vs 2-drug ART for people with HIV

Table. Modified version of the ACTG 320 trial, distorted to induce confounding.

Overall (N=978) 2-drug (n =579) 3-drug (n = 399)

Characteristic n % n % n %
Age > 40 384 39 232 40 152 38
Black race 286 29 165 28 121 30
Hispanic ethnicity 173 18 106 18 67 17
Injection drug use 156 16 93 16 63 16
CD4<100 699 71 364 63 335 84

Male sex 813 83 485 84 328 82




Figure 5. Estimated risk functions (x 100) under 2-drug (solid lines) and 3-drug (dotted lines)
antiretroviral therapy regimens in a modified version of the ACTG 320 data using the pooled
logistic g-computation estimator with time discretized to the month (black lines) and the

Breslow g-computation estimator (grey lines).
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Summary
1. G-computation is useful

2. Standard “pooled logistic” approach is ideal for settings with
time-varying covariates, but also subject to disadvantages
1. Discretization of time
2. Parametric models
3. Need to expand dataset

3. Breslow g-computation removes these disadvantages in settings
with time-fixed exposure and a survival outcome.



Data and code available at

https://github.com/edwardsjk/semiparametric_gcomp
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