Evaluating PrEP during pregnancy and postpartum in a high-risk setting

Kalisha Bheemraj

Division of Epidemiology and Biostatistics, School of Public Health, Faculty of Health Sciences, University of Cape Town, South Africa 26 September 2024

School of Public Health Departement Openbare Gesondheid Isikolo Sempilo Yoluntu UCLA Health David Geffen School of Medicine

Incidence of HIV in South Africa

HIV incidence among women aged 15-49 years [1]

Incidence of HIV in South Africa

HIV incidence among women aged 15-49 years [1]

Reducing the risk of HIV acquisition during pregnancy is crucial for improving maternal health and preventing mother-to-child transmission [2-3]

PrEP efficacy relies on correct and consistent use [2-3]

100

200

Highlighting the importance of monitoring and understanding adherence by accurately measuring PrEP exposure to: maximise protective benefits identify individuals with suboptimal adherence

300

400

500

600

700

800

Incidence of 621 per 100 000 women (464 - 800)

900

1.1k

1.2k

1.13k

1k

- > 16-year-old pregnant women not living with HIV
- Enrolled 1 195 women
- 18 months follow-up
- Observational cohort

SCOPE-PP

Stepped Care to Optimise PrEP Effectiveness in Pregnant & Postpartum Women

- > 16-year-old pregnant women not living with HIV
- Enrolled 750 women
- 15 months follow-up
- Ongoing RCT

Exposure

Subjective

Self-reported [4-6]

Collected through questionnaires or

interviews

Easy to implement

Cost-effective

Immediate overview of the general adherence trends

Often overestimated and subject to recall bias

Influenced by social desirability to meet perceived expectations

 \rightarrow non-differential exposure misclassification

Method

Self-reported

Participants who self-reported PrEP use in the last 30 days

Detectable levels of TFV in DBS TFV levels below limit of quantification

	39%		61%			
0%	20%	40%	60%	80%	100%	

Exposure

Subjective

Patients not returning with prescription bottles

Pill dumping or pill sharing

Does not capture occasionally missed doses

Pill count [7]

Tracking the number of pills remaining from a previously prescribed supply

Method

Self-reported

Pill count

Support dosage-related measures of adherence

Exposure

Objective

TDF-FTC tests: Urine assay_[8-10]

Detects Tenofovir disoproxil fumarate/ emtricitabine (TDF-FTC) present in urine Self-reported Pill count Urine assay

Method

High sensitivity (96%) and specificity (100%) Confirms TFV presence of PrEP taken in last 48 hours Point-of-care monitoring

Requires proper handling and laboratory analysis

Unable to assess long-term adherence

Lower TFV-DP concentrations were observed during pregnancy compared to the postpartum period

Exposure

Objective

Dried blood spots (DBS) cumulative PrEP adherence of TDF-FTC in erythrocytes

Long-term PrEP adherence of 30 days

Gold-standard technique

Method Self-reported Pill count Urine assay DBS PrEP-PP study 7% DBS results above detectable limit, participants indicated they did not take PrEP

in the last 30 days.

Logi

Logistical challenges and costly

Specialised laboratories (advanced technology and trained professionals)

Limited use for real-time adherence monitoring

Measuring PrEP Exposure

		Self- reported	Pill count	TDF-FTC via urine assay	TDF-FTC via DBS	TDF-FTC via Hair sample
Cost and ease of implementation	ÔÛ	S	S			
Objective measure	đ			S	S	
Ascertainment of PrEP usage		Daily, weekly, monthly	Monthly	Last 48 hours	Last 30 days	Monthly
Adherence results immediately available	e =	S	S	<		
Non-invasive		S	\bigcirc	S		

Measuring PrEP outcomes [15]

The type of outcome depends on the focus of the study

PrEP persistence

Question: Did you use PrEP in the last 30 days?

Participants take breaks throughout their PrEP use journey

Interruptions make it difficult to measure adherence consistently and assess long-term persistence

Logistic regression

ID	Baseline	3-month visit	6-month visit	9-month visit	12-month visit	PrEP continuation at 12-months	
001	Initiated PrEP	Yes	Yes	No	Yes	Continued	
002	Initiated PrEP	Yes	Yes	Yes	No	Discontinued	
003	Did not initiate PrEP	Initiated PrEP	Yes	No	Yes	Continued	

Measuring PrEP outcomes [15]

The type of outcome depends on the focus of the study

PrEP persistence

Participants take breaks throughout their PrEP use journey

Interruptions make it difficult to measure adherence consistently and assess long-term persistence

Question: Did you use PrEP in the last 30 days?						Logistic regression	Cox PH
ID	Baseline	3-month visit	6-month visit	9-month visit	12-month visit	PrEP continuation at 12-months	Time until first discontinuation
001	Initiated PrEP	Yes	Yes	No	Yes	Continued	9 months
002	Initiated PrEP	Yes	Yes	Yes	No	Discontinued	12 months
003	Did not initiate PrEP	Initiated PrEP	Yes	No	Yes	Continued	6 months

Measuring PrEP outcomes ^[6]

The type of outcome depends on the focus of the study

PrEP safety

Birth outcomes are critical for assessing maternal and infant health

Obtained through multiple sources with possibility of high ascertainment rates Directly from participants Online data bases Clinic registries

> 96% of birth outcomes were ascertained for 1 195 participants

Measuring PrEP outcomes [16]

The type of outcome depends on the focus of the study

PrEP efficacy and effectiveness

Seroconversion rates are a key indicator of PrEP efficacy

Exact date of seroconversion is crucial in PrEP studies

Encourages HIV testing at each clinic visit

Differentiate between PrEP failure (efficacy) and adherence issues (effectiveness)

The **midpoint** between the last negative test and the first positive test to estimate the date of seroconversion

Measuring PrEP outcomes [16]

The type of outcome depends on the focus of the study

PrEP efficacy and effectiveness

Seroconversion rates are a key indicator of PrEP efficacy

Exact date of seroconversion is crucial in PrEP studies

Encourages HIV testing at each clinic visit

Differentiate between PrEP failure (efficacy) and adherence issues (effectiveness)

For participants who are LTFU, test results can be sources from online data bases where the date of first positive test result can be used as the closest approximation

Measuring PrEP outcomes

The type of outcome depends on the focus of the study

Behavioural outcomes

Patterns of sexual behaviour and effective use of PrEP among pregnant and postpartum women is crucial for identifying high-risk periods

Self-reported sexual behaviour

Subject to recall bias

Under reporting of risk behaviour due to stigma

Missing visit leaves gaps in behaviour changes

75% 72% 60% 63% 45% 30% 15% 0% 21 (15-31) 9 (7-11) GA (mean, IQR), weeks Time postpartum (mean, IQR), weeks Early pregnancy Early postpartum

Self-reported condomless sex in PrEP-PP Study

Data management issues

Lost to follow-up

- Capturing reasons for LTFU are essential in providing insight
- Help in tailoring retention strategies and improving data completeness

Missing data

- Obtaining birth outcomes and seroconversion data from online databases and clinical registries
- Prescription records from clinics, however, participants may not be directly comparable due to differing methodologies

Future directions [17-18]

Long-acting injectable

Bi-monthly Cabotegravir and bi-annually Lenacapavir could simplify adherence monitoring and potentially improve participant retention when aligned with ANC visits

Long-acting duration, greater user discretion with a lower burden of use compared to daily oral pill

Digital pill systems

Directly measuring ingestion events

Ingestible radiofrequency emitter that signals a wearable reader upon PrEP ingestion, transmitting data to a smartphone app

Can reduce biases in self-reported data

Final Thoughts

Effective PrEP use is essential for reducing HIV risk in South Africa, particularly among pregnant and breastfeeding women

Accurate adherence measurement is challenging but critical for evaluating PrEP efficacy and effectiveness

Future innovations, including long-acting PrEP and digital tracking systems, offer promising solutions to enhance adherence monitoring and address data biases

Acknowledgements

Thank you to the participants in the PrEP-PP and SCOPE-PP studies, study staff and the following contributors:

- Dvora Joseph Davey
- Sumaya Dadan

- Nafisa Wara
- Rufaro Mvududu

Author correspondence: kalisha.bheemraj@uct.ac.za

School of Public Health Departement Openbare Gesondheid Isikolo Sempilo Yoluntu

References

- 1. Institute for Health Metrics Evaluation. Protocol for the Global Burden of Diseases, Injuries, and Risk Factors Study (GBD). IHME Seattle, WA; 2018.
- 2. Joseph Davey DL, Davies N, Raphael Y, Pillay Y, Bekker LG. Urgent appeal to implement pre-exposure prophylaxis for pregnant and breastfeeding women in South Africa. S Afr Med J. 2021;111(11):1038-9.
- 3. CDC CfDCaP. Pre-Exposure Prophylaxis (PrEP)2022. Available from: https://www.cdc.gov/hiv/risk/prep/index.html#:~:text=Pre%2Dexposure%20prophylaxis%20(or%20PrEP,use%20by%20at%20least%2074%25.
- 4. Yu X, Xu C, Ni Y, Chang R, Wang H, Gong R, et al. Pre-Exposure Prophylaxis (PrEP) Adherence Questionnaire: Psychometric Validation among Sexually Transmitted Infection Patients in China. Int J Environ Res Public Health. 2021;18(20).
- 5. Blumenthal J, Pasipanodya EC, Jain S, Sun S, Ellorin E, Morris S, et al. Comparing Self-Report Pre-Exposure Prophylaxis Adherence Questions to Pharmacologic Measures of Recent and Cumulative Pre-Exposure Prophylaxis Exposure. Front Pharmacol. 2019;10:721.
- 6. Joseph Davey DL, Nyemba DC, Mvududu R, Mashele N, Johnson L, Bekker L-G, et al. Pregnancy outcomes following self-reported and objective-measured exposure to oral preexposure prophylaxis in South Africa. AIDS. 2024;38(1).
- 7. Lam WY, Fresco P. Medication Adherence Measures: An Overview. Biomed Res Int. 2015;2015:217047.
- 8. Stranix-Chibanda L, Anderson PL, Kacanek D, Hosek S, Huang S, Nematadzira TG, et al. Tenofovir Diphosphate Concentrations in Dried Blood Spots From Pregnant and Postpartum Adolescent and Young Women Receiving Daily Observed Pre-exposure Prophylaxis in Sub-Saharan Africa. Clin Infect Dis. 2021;73(7):e1893-e900.
- 9. Joseph Davey DL, Dovel K, Mvududu R, Nyemba D, Mashele N, Bekker LG, et al. Pre-exposure Prophylaxis Recent Adherence With Real-Time Adherence Feedback and Partner Human Immunodeficiency Virus Self-Testing: A Pilot Trial Among Postpartum Women. Open Forum Infect Dis. 2022;9(2):ofab609.
- 10. Gandhi M, Bacchetti P, Rodrigues WC, Spinelli M, Koss CA, Drain PK, et al. Development and Validation of an Immunoassay for Tenofovir in Urine as a Real-Time Metric of Antiretroviral Adherence. EClinicalMedicine. 2018;2-3:22-8.
- 11. Khadka N, Gorbach PM, Nyemba DC, Mvududu R, Mashele N, Javanbakht M, et al. Evaluating the use of oral pre-exposure prophylaxis among pregnant and postpartum adolescent girls and young women in Cape Town, South Africa. Front Reprod Health. 2023;5:1224474.
- 12. Lim MD. Dried Blood Spots for Global Health Diagnostics and Surveillance: Opportunities and Challenges. Am J Trop Med Hyg. 2018;99(2):256-65.
- 13. Castillo-Mancilla JR, Searls K, Caraway P, Zheng JH, Gardner EM, Predhomme J, et al. Short communication: Tenofovir diphosphate in dried blood spots as an objective measure of adherence in HIV-infected women. AIDS Res Hum Retroviruses. 2015;31(4):428-32.
- 14. Gandhi M, Murnane PM, Bacchetti P, Elion R, Kolber MA, Cohen SE, et al. Hair levels of preexposure prophylaxis drugs measure adherence and are associated with renal decline among men/transwomen. Aids. 2017;31(16):2245-51.

- 15. Beesham I, Dovel K, Mashele N, Bekker LG, Gorbach P, Coates TJ, et al. Barriers to Oral HIV Pre-exposure Prophylaxis (PrEP) Adherence Among Pregnant and Postpartum Women from Cape Town, South Africa. AIDS Behav. 2022;26(9):3079-87.
- 16. CDC CfDCaP. Effectiveness of Prevention Strategies to Reduce the Risk of Acquiring or Transmitting HIV2022. Available from: https://www.cdc.gov/hiv/risk/estimates/preventionstrategies.html.
- 17. Nachega JB, Scarsi KK, Gandhi M, Scott RK, Mofenson LM, Archary M, et al. Long-acting antiretrovirals and HIV treatment adherence. Lancet HIV. 2023;10(5):e332-e42.
- 18. Chai PR, Goodman GR, Bronzi O, Gonzales G, Baez A, Bustamante MJ, et al. Real-World User Experiences with a Digital Pill System to Measure PrEP Adherence: Perspectives from MSM with Substance Use. AIDS Behav. 2022;26(7):2459-68.