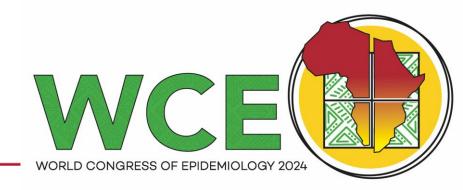


Using Machine Learning to build and use Relative Risk profiles for ART

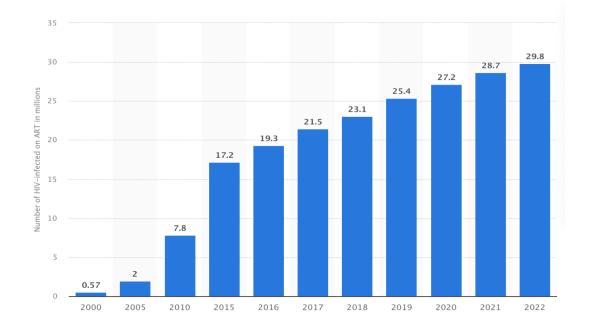
in South Africa and Nigeria

Kieran Sharpey-Schafer Palindrome Data, Cape Town, South Africa



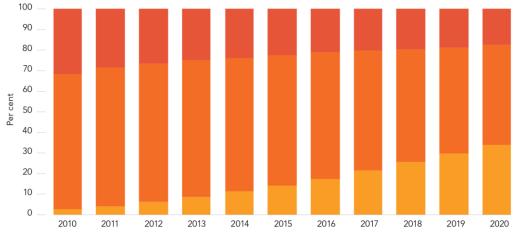
HIV is trying to Personalise Care at Scale

Access to ART worldwide has increased



Disengagement from care has also increased

People living with HIV not on antiretroviral therapy, adults (aged 15+ years), South Africa, 2010–2020

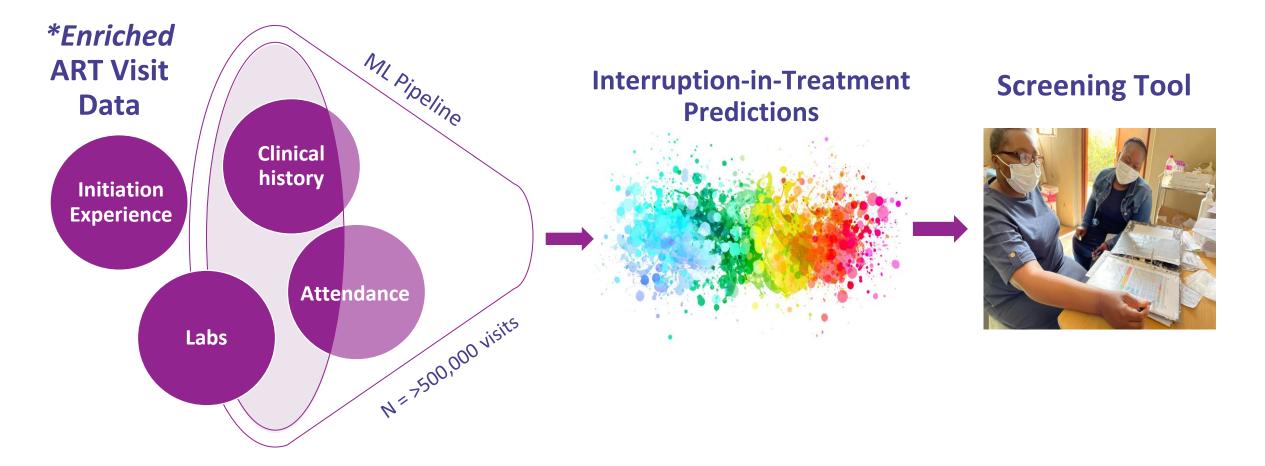


Adults (aged +15 years) living with HIV not diagnosed

Adults (aged +15 years) living with HIV diagnosed but never started on antiretroviral therapy

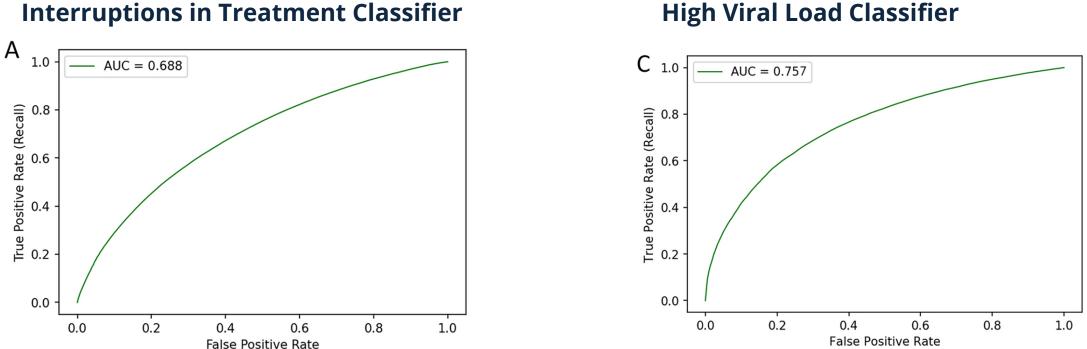
Adults (aged +15 years) living with HIV no longer on antiretroviral therapy

Method: Predict Interruption using EMR visit data & ML classifier



*Maskew et al, 2022, https://www.nature.com/articles/s41598-022-16062-0

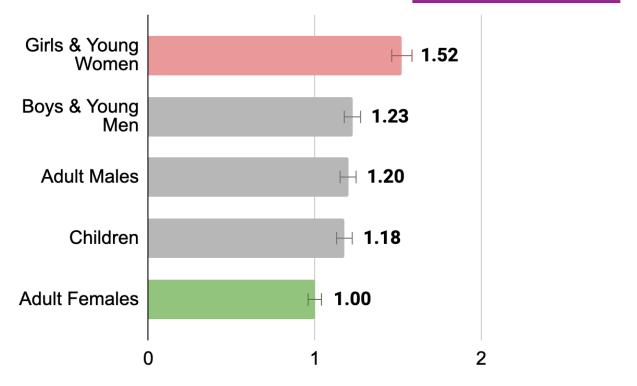
Results: The results indicated that prior patient behaviour and treatment history were extremely important in predicting both visit attendance and viral load results in these datasets and that traditional demographic predictor variables were less useful than behavioural indicators



[Maskew et al, 2022, https://www.nature.com/articles/s41598-022-16062-0]

Results: Traditional Demographics

Risk of ART Interruption at Next Visit by Demographic Profile

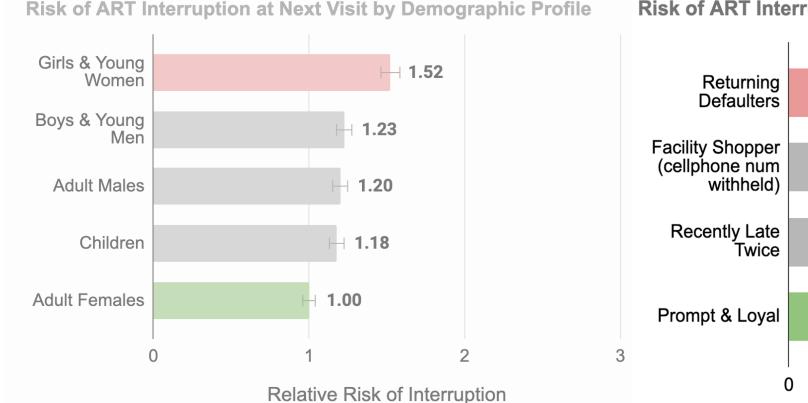


Relative Risk of Interruption

3

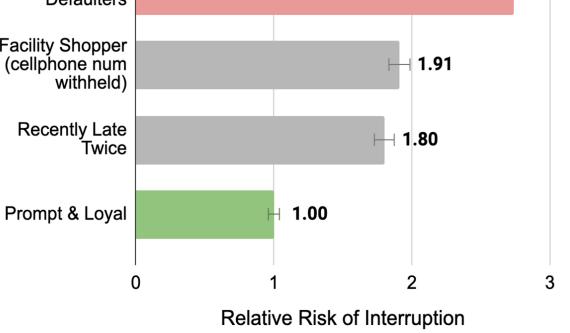
(n = 625,048 visits)

Results: ML identified behaviours



(n = 625,048 visits)

Risk of ART Interruption at Next Visit by Behavioural Profile



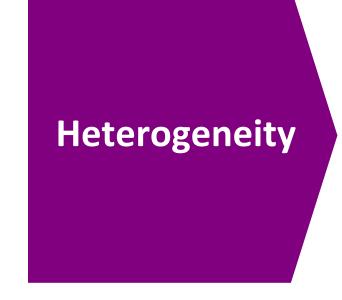
-2.74

Results: ML identified behaviours

95% CI Girls & Young Women: 3.50 **Returning Defaulter** (3.32 - 3.68) Girls & Young Women: -2.55 Facility Shopper (2.40 - 2.70)Girls & Young Women: 2.50 Late Twice (2.38 - 2.61)Girls & Young Women: - 1.56 Prompt & Loyal (1.52 - 1.60)Adult Females: ⊣ 1.00 Prompt & Loyal 2 3 4

Risk of ART Interruption at Next Visit for AGYW by Behaviour Profile

Relative Risk of ART Interruption



"all happy families are alike, while each unhappy family is unhappy in their own way"

- from Anna Karenina

Results: Replicated in South Africa & Nigeria

Method works on different EMRs	Results replicate		
 2 Provinces in South Africa 	Very similar signal acrossGeographyTime (covid)		
 4 States in Nigeria 	 more variance between states and localized predictors Behaviour always a important factor >> demographics 		

Methods & Results

Applying machine learning and predictive modeling to retention and viral suppression in South African HIV treatment cohorts, Nature Scientific Reports, 2022 [https://doi.org/10.1038/s41598-022-16062-0]

Validation and improvement of a machine learning model to predict interruptions in antiretroviral treatment in South Africa, JAIDS, [https://doi.org/10.1097/qai.00000000003108]

Historical visit attendance as predictor of treatment interruption in South African HIV patients: Relating linear risk factors to a validated machine learning model, PLOS,

IMPLEMENTATION SCIENCE

Predictive Analytics Using Machine Learning to Identify ART Clients at Health System Level at Greatest Risk of Treatment Interruption in Mozambique and Nigeria

Stockman, Jeni MA^a; Friedman, Jonathan MA^b; Sundberg, Johnna BA^a; Harris, Emily MA^c; Bailey, Lauren ScM^c

Author Information \otimes

JAIDS Journal of Acquired Immune Deficiency Syndroi 10.1097/QAI.0000000000002947 ©

Predicting Treatment Interruption Among People Living With HIV in Nigeria: Machine Learning Approach

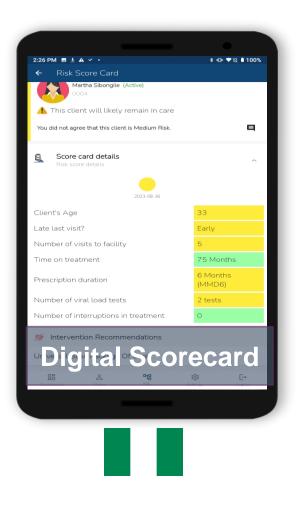
Ogbechie M, Fischer Walker C, Lee M et al.

JMIR AI 2023, URL: https://ai.jmir.org/2023/1/e44432, DOI: 10.2196/44432

Health Economics and Epidemiology Research Office

Application: Feasible point of care risk tool

F	1. For each question, circle one answ	Scoring Ins			<i>*</i> @*
	2. Match this score to the "Total Adher Adherence Scorecard	ence Score", and consid	er what guidance your o	client might need	Score
	What is the client's age group?	Young adult (18-35)	Adult (36-59)	Senior (60+) Child (0 - 17)	00010
	For today's visit, is the client:	Late	First visit	On Time	
		Unknown	First or	Early On Time	
2	For their last visit, was the clien	t Late	second visit	Early	
Client	Has the client ever been over a month late?	More than once	Once	Never	
	When was the client's last visit	5 or more months	3-4 months ago	0-2 months ago	
	How many times has the client ever	ogo	First visit	COMDD or Fant Lane 11 or more visits	
_	visited this facility?		0 - 10 Mars	TT OF MORE TISIS	
	Have you disclosed your HIV statu to your friends or family?	s None Partial	Full disclosure		1
osocia	How much time did it take you to g here?	et More than 30 mins	30 mins or less		
Psych	How many people do you live with	? Other number	2 - 6 other people		
-	Are you employed or studying?	No	Yes		
				Total	
		Total Adhered			
0 1 2 3 4 5 6 7 8 9 10				17 18 19 20	
	low-score	mid	-score	high-sci	sre
	Do you agree with the score for this client? Yes No				
What group should this client be in?			low-score	mid-score	high-sco
				_	
1	Comments:		Score-Study-ID#		



✓ 98% Predictions Agreeable for Healthworkers

✓ Fast – bimodal consultations

- ✓ Observed training prediction distribution
- ? Personalise interventions

? Improve Outcomes

A good time to Embrace new methods

- Existing routine data
- Modern data science
- Non-linear Complexity

Thank You!

