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HIV is trying to Personalise Care at Scale

Access to ART worldwide has increased
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Disengagement from care has also increased

People living with HIV not on antiretroviral therapy, adults (aged 15+ years),
South Africa, 2010-2020
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W Adults (aged +15 years) living with HIV not diagnosed
W Adults (aged +15 years) living with HIV diagnosed but never started on antiretroviral therapy
m Adults (aged +15 years) living with HIV no longer on antiretroviral therapy
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Method:
Predict Interruption using EMR visit data & ML classifier

*Enriched
ARJ Visit Interruption-in-Treatment Screening Tool
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Results: The results indicated that prior patient behaviour and treatment history were extremely
important in predicting both visit attendance and viral load results in these datasets and that
traditional demographic predictor variables were less useful than behavioural indicators
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Results: Traditional Demographics

Risk of ART Interruption at Next Visit by Demographic Profile
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Results: ML identified behaviours

Risk of ART Interruption at Next Visit by Demographic Profile Risk of ART Interruption at Next Visit by Behavioural Profile
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Results: ML identified behaviours

Risk of ART Interruption at Next Visit for AGYW by Behaviour Profile
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“all happy families are alike,

Heterogeneity

while each unhappy family is unhappy

in their own way”

- from Anna Karenina
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Results: Replicated in South Africa & Nigeria

Method works on different Results replicate

EMRs

e 2 Provinces in South Africa Very similar signal across
e Geography

* Time (covid)

e 4 States in Nigeria ® more variance between states

and localized predictors

I I e Behaviour always a important
factor >> demographics
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Methods & Results

Applying machine learning and predictive modeling to retention and viral suppression H E R O

in South African HIV treatment cohorts, Nature Scientific Reports, 2022 | wsecancommn
[https://doi.org/10.1038/s41598-022-16062-0]

Validation and improvement of a machine learning model to predict interruptions in
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Historical visit attendance as predictor of treatment interruption in South African HIV
patients: Relating linear risk factors to a validated machine learning model, PLOS,
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Treatment Interruption in Mozambique and Nigeria
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Application: Feasible point of care risk tool

I I
| |
' v 98% Predictions Agreeable for i
. Healthworkers |
e ! i
|
' ¥ Fast — bimodal consultations |
: |
! :
Late last visit? | . . . .
' ' Observed training prediction :
I distribution i
B | !
! :
I )
' ?  Personalise interventions :
! :
1 I
| ? :
' ¥ Improve Outcomes !
I

@ PALINDROME
g DATA




. » Existing routine data
A gOOd time to  Modern data science

Embrace new methods . Non-linear complexity

Thank You!
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