Associations Between Stunting and High-ponderosity Defined through Weight-for-height or Body-mass-index-for-age for Overweight in Under-five Children

L. Naga Rajeev,¹ Chaitali A Borgaonkar,¹ Sai Mahesh Vajjala,¹ Hetal Rathod,¹ Harshpal Singh Sachdev²

¹Department of Community Medicine, Dr. D.Y. Patil Medical College, Hospital & Research Centre, Dr. D.Y. Patil Vidyapeeth (Deemed to be University), Pune, India ²Sitaram Bhartia Institute of Science and Research, New Delhi, India

Background

- Co-existence of stunting & overweight; inconsistent in children
- Under 5 children: High ponderosity defined as >1SD & >2SD of WHO for either
 Weight-for-height or Body-Mass-Index (BMI)-for-age
- Unlike BMI-for-age, weight-for-height ignores change in ponderosity with age
- >WFH underestimates overweight w.r.t BMI in >6mo children with high stunting prevalence
- Suggests the stunting-overweight association vary with metric to ascertain overweight
- Null Hypothesis: Are Stunting and Overweight defined through WHZ (CSO_WHZ) & BMI-for-age (CSO_BMIZ) associations similar?

3

Methods

Contemporary DHS datasets (after 2010) were evaluated from South- and South-East Asia and Sub-Saharan Africa

► Absolute anthropometry converted to WHO Z-scores

CSO_WHZ & CSO_BMIZ associations: Odds Ratio (OR) in all individual datasets

- Meta analysis: Pooled by using random effects model
- Stratified analyses: sex, age and region

Software used STATA version 17.0

Results

- >21 DHS datasets: 7 South- and South-East Asia & 14 Sub-Saharan Africa
- Total sample = 314,187; Except India (197,651), in other DHS surveys: 2342 (Maldives) to 17,280 (Kenya)
- > Young infants (<6 mo) comprised 8%-14% of under 5 children; boys = girls > Participants, especially Asians, were mostly shorter with lower ponderosity than WHO standards (HAZ: -1.6 to -0.9; Asia: WHZ: -0.9 to -0.2; BMIZ: -0.8 to -0.1; Africa: WHZ: -0.5 to +0.4; BMIZ: -0.5 to +0.5)
- ➤ CSO_WHZ prevalence (1.5%) < CSO_BMIZ (2.3%) in 6-59 months; reverse <6 mo (5.2% vs 2.0%)</p>

Results

Datasets Possible Risk of Overweight: Concurrent Stunting Odds and Overweight: (Weight-for-Length/Height)			Weight	Datasets Possible Risk of Overweight		•	Weight					
and Overweight: (weight-	for-Length/Height)	[95% CI]	(%)	and Overweight:	(BMI-for-Age)	[95% CI]	(%)					
South and South-East Asia (DHS Year)	I			South and South-East Asia (DHS Year)	I							
Bangladesh (2017-18)	I	0.64 [0.50, 0.78]	4.91	Bangladesh (2017-18)	+	1.00 [0.82, 1.18]	4.94					
Cambodia (2021-22)	I	1.57 [1.20, 1.94]	4.36	Cambodia (2021-22)	I —•	2.06 [1.61, 2.51]	4.38					
India (2019-21)	I -	1.79 [1.73, 1.85]	4.99	India (2019-21)	I =	2.43 [2.35, 2.51]	5.04					
Maldives (2016-17)		0.92 [0.59, 1.25]	4.47	Maldives (2016-17)	-+	1.19 [0.80, 1.58]	4.53					
Myanmar (2015-16)	- 1	0.70 [0.48, 0.92]	4.77	Myanmar (2015-16)	-	1.35 [1.04, 1.66]	4.71					
Nepal (2022)	- -	0.43 [0.23, 0.63]	4.81	Nepal (2022)	=	0.90 [0.57, 1.23]	4.66					
Pakistan (2017-18)	- 1 =	1.08 [0.88, 1.28]	4.81	Pakistan (2017-18)	I —	1.84 [1.53, 2.15]	4.71					
Heterogeneity: τ ² = 0.49, I ² = 98.63%, H ² = 72.78		1.02 [0.49, 1.54]		Heterogeneity: τ ² = 0.68, I ² = 98.07%, H ² = 51.89		1.54 [0.92, 2.16]						
Test of $\theta_i = \theta_j$: Q(6) = 436.67, p = 0.00	1			Test of $\theta_i = \theta_j$: Q(6) = 311.34, p = 0.00	I							
Sing and another Headerse	1			199 MA 993,92 203,943,44	I							
Sub-Saharan Africa (DHS Year)	1			Sub-Saharan Africa (DHS Year)	I							
Angola (2015-16)	- -+	0.92 [0.76, 1.08]	4.88	Angola (2015-16)	I	1.38 [1.18, 1.58]	4.92					
Benin (2017-18)	-	0.95 [0.81, 1.09]	4.91	Benin (2017-18)	I	1.50 [1.32, 1.68]	4.94					
Cameroon (2018)	- 1	1.07 [0.91, 1.23]	4.88	Cameroon (2018)	I	1.49 [1.27, 1.71]	4.89					
Congo (2011-12)	+- -	1.15 [0.91, 1.39]	4.73	Congo (2011-12)	I	1.57 [1.28, 1.86]	4.75					
Ethiopia (2019)		0.83 [0.65, 1.01]	4.85	Ethiopia (2019)		1.24 [1.00, 1.48]	4.86					
Gambia (2019-20)	_ _ _!	0.64 [0.39, 0.89]	4.68	Gambia (2019-20)	_ _	1.21 [0.84, 1.58]	4.57					
Ghana (2014)	+- - -	1.33 [0.92, 1.74]	4.24	Ghana (2014)	·	1.92 [1.41, 2.43]	4.22					
Kenya (2022)	- !	0.59 [0.49, 0.69]	4.96	Kenya (2022)	÷	1.02 [0.90, 1.14]	5.01					
Liberia (2019-20)	_ ! =_	1.08 [0.81, 1.35]	4.63	Liberia (2019-20)		1.55 [1.22, 1.88]	4.66					
Malawi (2015-16)	÷	0.98 [0.82, 1.14]	4.88	Malawi (2015-16)		1.49 [1.27, 1.71]	4.89					
Mali (2018)	. _	1.40 [1.15, 1.65]	4.68	Mali (2018)		2.10 [1.77, 2.43]	4.66					
Mozambique (2011)	! -	1.41 [1.27, 1.55]	4.91	Mozambique (2011)		2.05 [1.86, 2.24]	4.92					
Nigeria (2018)	.	0.99 [0.85, 1.13]	4.91	Nigeria (2018)		1.78 [1.58, 1.98]	4.92					
Tanzania (2022)	4 -	1.12 [0.90, 1.34]	4.77	Tanzania (2022)		1.57 [1.32, 1.82]	4.82					
Heterogeneity: τ ² = 0.07, I ² = 89.73%, H ² = 9.73	+	1.02 [0.88, 1.17]		Heterogeneity: $\tau^2 = 0.11$, $I^2 = 89.61\%$, $H^2 = 9.63$	•	1.55 [1.36, 1.74]						
Test of $\theta_i = \theta_i$: Q(13) = 126.54, p = 0.00	1			Test of $\theta_i = \theta_i$: Q(13) = 125.15, p = 0.00								
permission and out considered and provide provided and a second	-			(addition-red) (part)—attractionation (providential) (providential)								
Overall	\$	1.02 [0.81, 1.24]		Overall	\diamond	1.55 [1.30, 1.81]						
Heterogeneity: τ ² = 0.24, I ² = 97.43%, H ² = 38.96	-			Heterogeneity: $\tau^2 = 0.34$, $I^2 = 96.79\%$, $H^2 = 31.18$								
Test of $\theta_i = \theta_i$: Q(20) = 779.30, p = 0.00				Test of $\theta_i = \theta_i$: Q(20) = 623.65, p = 0.00								
Test of group differences: $Q_b(1) = 0.00$, p = 0.98	!			Test of group differences: $Q_{b}(1) = 0.00$, p = 0.97								
	0.5 1 1.5 2 2.5	2		$1000 \text{ group unterences. } \mathbf{w}_{b}(1) = 0.00, p = 0.07$	0 .5 1 1.5 2 2.5	2						
8	0.5 1 1.5 2 2.5	3			0 .5 1 1.5 2 2.5	3						
Random-effects DerSimonian–Laird model		Age-group: 6-5	9 months	Random-effects DerSimonian-Laird model		Age-group: 6-59	months					

Results

Concurrent Stunting and Overweight Odds Ratio Weight				Concurrent St	Odds Ratio	Weight	
Datasets	(Weight-for-Length/Height)	[95% CI]	(%)		MI-for-Age)	[95% CI]	(%)
South and South-East Asia	(DHS Year)			South and South-East Asia (DHS Year)			
Bangladesh (2017-18)	- I	0.47 [0.25, 0.69]	5.54	Bangladesh (2017-18)	- 	0.95 [0.62, 1.28]	5.17
Cambodia (2021-22)	I	1.91 [1.18, 2.64]	4.35	Cambodia (2021-22)		2.92 [1.92, 3.92]	4.43
India (2019-21)	-	2.43 [2.29, 2.57]	5.62	India (2019-21)	-	3.30 [3.14, 3.46]	5.25
Maldives (2016-17)	_ _ _	0.84 [0.33, 1.35]	4.94	Maldives (2016-17)		1.77 [0.97, 2.57]	4.70
Myanmar (2015-16)	_ <u>+</u>	1.42 [0.48, 2.36]	3.75	Myanmar (2015-16)	+- -	1.79 [0.81, 2.77]	4.46
Nepal (2022)	ł	1.00 [0.98, 1.02]	5.68	Nepal (2022)		0.18 [-0.17, 0.53]	5.15
Pakistan (2017-18)		2.03 [1.19, 2.87]	4.02	Pakistan (2017-18)		2.80 [1.82, 3.78]	4.46
Heterogeneity: $\tau^2 = 0.71$, $I^2 = 0.71$	= 98.66%, H ² = 74.49	1.42 [0.76, 2.08]		Heterogeneity: τ ² = 2.72, I ² = 98.31%, H ² = 59.2	3	1.94 [0.69, 3.20]	L
Test of $\theta_i = \theta_j$: Q(6) = 446.94	4, p = 0.00			Test of $\theta_i = \theta_j$: Q(6) = 355.39, p = 0.00			
					i		
Sub-Saharan Africa (DHS Y	/ear)			Sub-Saharan Africa (DHS Year)	i		
Angola (2015-16)		1.47 [0.96, 1.98]	4.94	Angola (2015-16)		1.95 [1.40, 2.50]	4.99
Benin (2017-18)	Ť.	1.24 [0.81, 1.67]	5.13	Benin (2017-18)	I	2.03 [1.46, 2.60]	4.97
Cameroon (2018)	j	1.53 [1.20, 1.86]	5.34	Cameroon (2018)	I	2.37 [1.92, 2.82]	5.08
Congo (2011-12)	ř.	1.53 [0.94, 2.12]	4.73	Congo (2011-12)	I —•	2.65 [1.79, 3.51]	4.62
Ethiopia (2019)	- t -	1.04 [0.49, 1.59]	4.83	Ethiopia (2019)		1.95 [1.13, 2.77]	4.67
Gambia (2019-20)	—• † —	0.86 [0.10, 1.62]	4.24	Gambia (2019-20)		0.97 [0.23, 1.71]	4.77
Ghana (2014)	— •—	2.41 [1.08, 3.74]	2.79	Ghana (2014)	· · · · · · · · · · · · · · · · · · ·	3.30 [1.67, 4.93]	3.51
Kenya (2022)	-+1	0.67 [0.43, 0.91]	5.51	Kenya (2022)	+	0.98 [0.71, 1.25]	5.20
Liberia (2019-20)	-+	1.13 [0.48, 1.78]	4.57	Liberia (2019-20)	I	2.11 [1.17, 3.05]	4.51
Malawi (2015-16)	+ - -	1.39 [0.92, 1.86]	5.03	Malawi (2015-16)		1.96 [1.41, 2.51]	4.99
Mali (2018)	1	2.80 [1.84, 3.76]	3.69	Mali (2018)	·	3.66 [2.50, 4.82]	4.20
Mozambique (2011)	ļ -	2.02 [1.67, 2.37]	5.30	Mozambique (2011)	·	2.85 [2.42, 3.28]	5.09
Nigeria (2018)	<u> </u>	1.40 [0.95, 1.85]	5.08	Nigeria (2018)		2.44 [1.81, 3.07]	4.91
Tanzania (2022)	_ _	1.22 [0.71, 1.73]	4.94	Tanzania (2022)	_ _ _	2.04 [1.39, 2.69]	4.88
Heterogeneity: $\tau^2 = 0.21$, $I^2 = 0.21$	= 78.75%, H ² = 4.71	1.40 [1.12, 1.69]		Heterogeneity: $\tau^2 = 0.52$, $I^2 = 85.57\%$, $H^2 = 6.93$	•	2.16 [1.73, 2.58]	l.
Test of $\theta_i = \theta_j$: Q(13) = 61.18	3, p = 0.00			Test of $\theta_i = \theta_j$: Q(13) = 90.10, p = 0.00			
				un vo losar - Andri			
Overall	\$	1.42 [1.11, 1.73]		Overall	\diamond	2.10 [1.58, 2.63]	l.
Heterogeneity: $\tau^2 = 0.44$, $I^2 =$	= 96.19%, H ² = 26.22			Heterogeneity: $\tau^2 = 1.36$, $I^2 = 95.85\%$, $H^2 = 24.0$	8		
Test of $\theta_i = \theta_j$: Q(20) = 524.4	43, p = 0.00			Test of $\theta_i = \theta_j$: Q(20) = 481.60, p = 0.00			
Test of group differences:	$Q_{\rm b}(1) = 0.00, p = 0.96$			Test of group differences: $Q_b(1) = 0.10$, p = 0.7	75		
	0 1 2 3 4 5	6			0 1 2 3 4 5	6	
Random-effects DerSimonian-	-Laird model	Age-group: 6-59	months	Random-effects DerSimonian–Laird model	1000 00 X000 (7 C) T	Age-group: 6-	-59 months

Conclusions

≻CSO_WHZ and CSO_BMIZ associations are dissimilar

Originates from ignoring physiological changes with age in Weight-for-height metric

