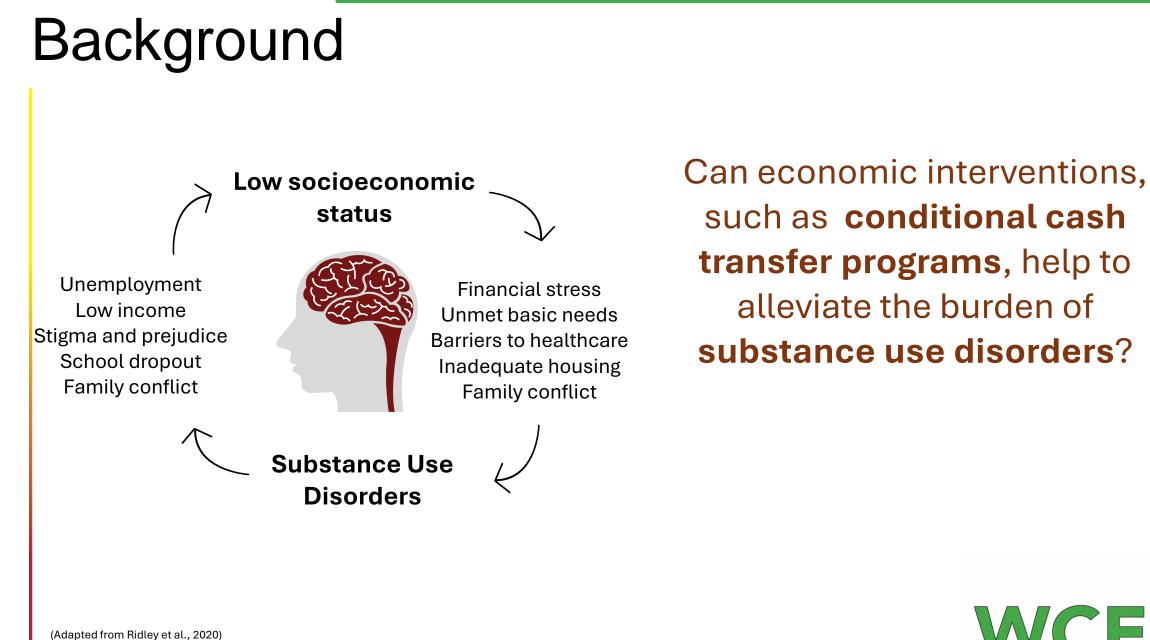
The Bolsa Família conditional cash transfer program is associated with reduced substance use disorder hospitalizations: a quasi-experimental study of the 100 million Brazilian cohort


Dr. Lidiane Toledo

WCE2024 scholarship awardee

Center of Data and Knowledge Integration for Health (CIDACS/FIOCRUZ), Brazil

September 27, 2024

WORLD CONGRESS OF EPIDEMIOLOGY 20

Background

The Bolsa Família Program

Who can receive?

Low-income families – Household per capita income ~ USD 43.

How much do beneficiaries receive?

- Monthly cash transfer. ٠
 - Example: 2023 -BRL 600 per month (~ USD 119)

Educational and Health Conditionalities

(1) Education i.e., School

(2) Health

i.e., Health checkups, vaccination, prenatal attendance $\geq 60\%$

Aims

General

To analyze whether the conditional cash transfer program Bolsa Família program (BFP) is associated with a decrease in SUD hospitalization rates.

Specifics

To investigate differential associations according to

(i) primary cause of hospitalization: alcohol and other substances,(ii) sex,

(ii) the material deprivation levels of the municipality in which participants resided (Brazilian Deprivation Index – IBP-CIDACS).

Methods

- Study design: quasi-experimental.
- Data source:

(i) The National Hospitalization Information System and

(ii) The BFP payroll database,

(iii) linked to the 100 million Brazilian cohort's baseline.

• Study population: People (≥ 5 years) enrolled at the cohort baseline between 01/01/2008 and 31/12/2015.

Variables:

(i) Exposure: The Bolsa Família Program ('yes' x 'no');

(ii) Outcome: Hospitalization due to substance use disorders (ICD-10: F10-F19);

(iii) Controls: sex, age, education, unemployment status, area of residence, housing conditions, and cohort entry year.

Methods

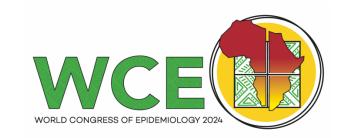
Statistical analysis

(i) Descriptive analyses of the baseline characteristic of non-exposed and exposed groups;

(ii) Since there were imbalances in the baseline characteristic of non-exposed and exposed groups [SMD values ≥ 0.2] we used the propensity score associated with weighting strategies to promote the balance of baseline characteristics between the two groups.

Methods

Statistical analysis


(iii) Main model: Poisson regression model with PS and the inverse probability of treatment weighting (IPTW) → to evaluate the association of BFP with SUD (Relative Risk ratio [IRR])

(ii) Robustness check: Poisson regression models:

- * Unadjusted;
- * Adjusted by the control variates;
- * Using stabilized inverse probability of treatment weighting (SIPTW);
- * Using kernel weighting.

(iii) Poisson regression models by:

- * Sex,
- * Susbtance type;
- * Brazilian Deprivation Index IBP-CIDACS.

Table 1.Baseline characteristics overall and by Bolsa Família Program beneficiaries and non-beneficiaries, Brazil, 2008-2015

Original cohort					
	Overall		Non-BFP	*BFP	SMD
Ν	35,926,326		18,471,683	17,454,643	
*SUD Hospitalization					0.00773
Yes	39,891 (0 · 1)		18,195 (0 · 1)	21,696 (0 · 1)	
No	35,886,435 (99	·9)	18,453,488	17,432,947	
Age			(99.9)	(99 · 9)	0.53604
Child (5-12 years old)	13,901,351 (38	·7)	5,351,541 (29.0)	8,549,810 (49.0)	
Adolescent (13-18 years old)	2,677,408 (7 · 5)	1,233,265 (6 · 7)	1,444,143 (8 · 3)	
Young adult (19-24 years old)	3,118,664 (8.7)	1.608.987 (8.7)	1,509,677 (8.6)	
Adult (25-64 years old)	14,275,425 (39	·7)	8,489,933 (46.0)	5,785,492 (33 · 1)	
Older adult (65+ years old)	1,953,478 (5 · 4)	1,787,957 (9.7)	165,521 (0.9)	
Sex					0.08114
Male	16,976,511 (47	·3)	8,365,302 (45.3)	8,611,209 (49.3)	
Female	18,949,815 (52	·7)	10,106,381 (54·7)	8,843,434 (50 · 7)	
Education level					0.3726
Never attended school	9,323,024 (26	0)	3,784,013 (20.5)	5,539,011 (31.7)	
Preschool	1,759,206 (4 • 9)	769,175 (4 · 2)	990,031 (5.7)	
Primary school	593,464 (1.7)		295,228 (1.6)	298,236 (1.7)	
Junior high school	15,583,639 (43	· 4)	8,374,600 (45.3)	7,209,039 (41.3)	
High school	6,372,803 (17 ·	7)	4,051,731 (21.9)	2,321,072 (13.3)	
College/university	539,639 (1 · 5)		461,545 (2.5)	78,094 (0 · 4)	
Missing	1,754,551 (4 • 9)	735,391 (4.0)	1,019,160 (5 · 8)	Continu

Unemployed				0.21912
No	8,633,239 (24.0)	5,368,946 (29.1)	3,264,293 (18.7)	
Yes	19,283,186 (53 · 7)	9,744,132 (52.8)	9,539,054 (54.7)	
Missing	8,009,901 (22.3)		46,512,296	
		3,358,605 (18 · 2)	(26.6)	
Area of residence				0.08535
Urban	29,227,504 (81 · 4)	15,331,071	13,896,433	
		(83.0)	(79.6)	
Rural	6,667,102 (18.6)	3,131,670 (17.0)	3,535,432 (20.3)	
Missing	31,720 (0 · 1)	8,942 (0.0)	22,778 (0.1)	
Living conditions	4.05 (1.42)	4 · 19 (1 · 35)	3.90 (1.47)	0.20009
Year of registration				0.56395
2008	5,135,143 (14.3)	2,572,121 (13.9)	2,563,022 (14.7)	
2009	5,326,721 (14.8)	1,566,195 (8 · 5)	3,760,526 (21.5)	
2010	5,073,606 (14 · 1)	2,227,776 (12.1)	2,845,830 (16.3)	
2011	4,176,114 (11.6)	1,672,941 (9 · 1)	2,503,173 (14.3)	
2012	5,642,786 (15.7)	3,426,490 (18.5)	2,216,296 (12.7)	
2013	4,160,937 (11.6)	2,450,717 (13.3)	1,710,220 (9.8)	
2014	3,772,755 (10 · 5)	2,676,299 (14.5)	1,096,456 (6 · 3)	
2015	2,638,264 (7 · 3)	1,879,144 (10 · 2)	759,120 (4.3)	

Continue...

Table 2. Proportion and respective 95%CI of the covariates used to calculate the propensity score after balanced by IPTW weighting

	Non-BFP	*BFP	STd-diff
Age			0.04
Child (5-12 years old)	0.39 (0.39, 0.39)	0.49 (0 · 49, 0 · 49)	
Adolescent (13-18 years old)	0 · 10 (0 · 10, 0 · 10)	0.08 (0.08, 0.08)	
Young adult (19-24 years old)	0.09 (0.09, 0.09)	0.08 (0.08, 0.08)	
Adult (25-64 years old)	0.39 (0.39, 0.39)	0.32 (0.32, 0.32)	
Older adult (65+ years old)	0 • 17 (0 • 17, 0 • 17)	0.00(0.00, 0.00)	
Sex			0.01
Male	0.49 (0.49, 0.49)	0.48 (0.48, 0.48)	
Female	0.50 (0.50, 0.50)	0.51 (0.51, 0.51)	
Education level			-0.07
Never attended school	0.30 (0.30, 0.30)	0.39 (0.39, 0.39)	
Preschool	0.03 (0.03, 0.03)	0.05 (0.05, 0.05)	
Primary school	0.01 (0.01, 0.01)	0.01 (0.01, 0.01)	
Junior high school	0 • 47 (0 • 47, 0 • 47)	0.39 (0.39, 0.39)	
High school	0 · 16 (0 · 16, 0 · 16)	0.14 (0.14, 0.14)	
College/university	0.00 (0.00, 0.00)	0.00 (0.00, 0.00)	
Unemployed			0.04
No	0 · 24 (0 · 24, 0 · 24)	0.24 (0.24, 0.24)	
Yes	0 · 75 (0 · 75, 0 · 75)	0 · 75 (0 · 75, 0 · 75	

Area of residence			0.01
Urban	0.77 (0.77, 0.77)	0.78 (0.78, 0.78)	
Rural	0.22 (0.22, 0.22)	0.21 (0.21, 0.21)	
Living conditions			-0.00
0	0.04 (0.04, 0.04)	0.05 (0.05, 0.05)	
1	0.05 (0.05, 0.05)	0.05 (0.05, 0.05)	
2	0.07 (0.07, 0.07)	0.07 (0.07, 0.07)	
3	0.11 (0.11, 0.11)	0.12 (0.12, 0.12)	
4	0.19 (0.19, 0.19)	0.18 (0.18, 0.18)	
5	0.51 (0.51, 0.51)	0.50 (0.50, 0.50)	
Year of registration			-0.03
2008	0.19 (0.19, 0.19)	0.17 (0.17, 0.17)	
2009	0.27 (0.27, 0.27)	0.22 (0.22, 0.22)	
2010	0.14 (0.14, 0.14)	0.17 (0.17, 0.17)	
2011	0.07 (0.07, 0.07)	0.13 (0.13, 0.13)	
2012	0.10 (0.10, 0.10)	0.12 (0.12, 0.12)	
2013	0.09 (0.09, 0.09)	0.08 (0.08, 0.08)	
2014	0.06 (0.06, 0.06)	0.05 (0.05, 0.05)	
2015	0.04 (0.04, 0.04)	0.03 (0.03, 0.03)	

Continue...

Table 3. IRR of *SUD hospitalizations among *BFP beneficiaries in the original and weighting cohorts, Brazil, 2008-2015

Confounder adjustment	Ν	Estimated IRR (95% CI) from a Poisson regression model	p-value
IPTW weighting	30,556,848	→ 0·83 (0·81, 0·85)	0.000
Unadjusted	35,002,823	0.93 (0.91, 0.95)	0.000
Adjusted	25,805,305	0.97 (0.95, 0.99)	0.000
SIPTW weighting	25,805,305	0.93 (0.91, 0.95)	0.000
Kernel Weighting	25,805,219	0.83 (0.81, 0.85)	0.000

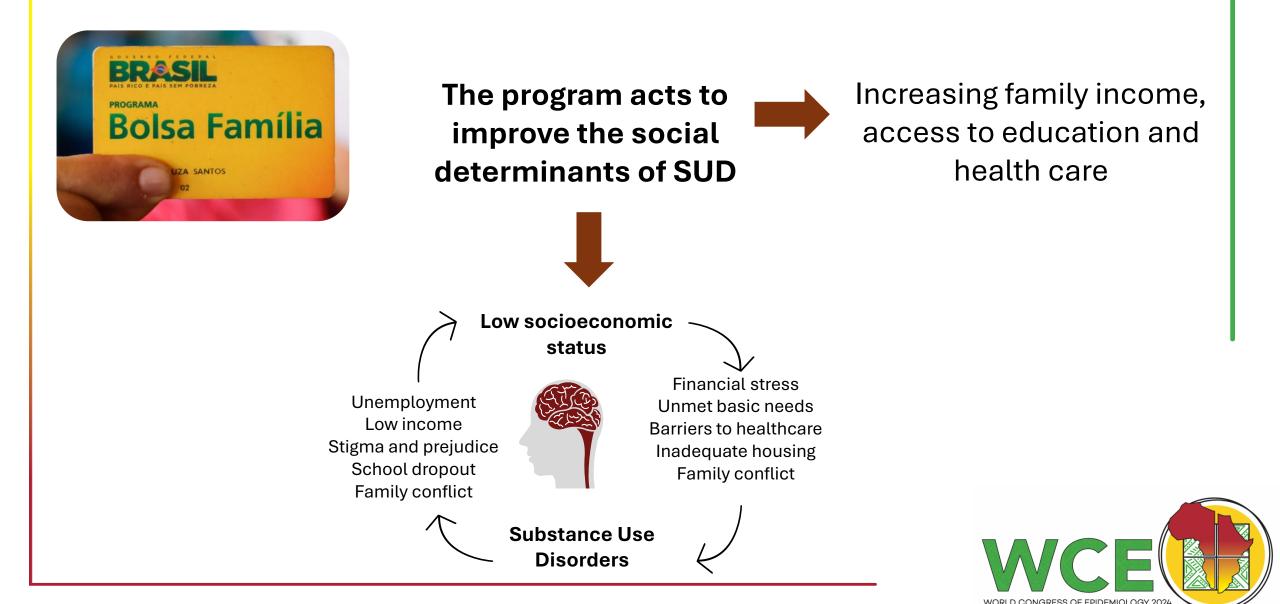


Table 4. IRR of SUD hospitalizations weighting with IPTW by specific causes and stratified by sex and deprivation area index among BFP beneficiaries compared to non-beneficiaries, Brazil, 2008-2015

	IRR (95% CI)	p-value	Ν		
ICD-10 specific causes					
Alcohol use disorders	0.74 (0.71, 0.77)	0.000	25,789,737		
Other SUD (except alcohol)	0.89 (0.86, 0.92)	0.000	30,538,974		
Stratified by Sex					
Male	0.79 (0.77 0.81)	0.000	11,953,579		
Female	0.89 (0.84, 0.94)	0.000	13,851,726		
Stratified by Deprivation area (IBP-CIDACS)					
Low deprivation	0.90 (0.87, 0.92)	0.000	17,056,504		
Medium deprivation	0.63 (0.58, 0.68)	0.000	6,559,288		
High deprivation	0.59 (0.49, 0.71)	0.000	2,189,513		

What could explain these results?

Main takeways

- Alleviating financial pressure, fulfilling basic needs, improving socioeconomic status, promoting health access, and encouraging educational attainment may all mediate the protective association of BPF against SUD hospitalizations.
- Our findings adding a new dimension to SUD prevention strategies.
- The BFP may lead to better health outcomes among people who use substances.
- The BFP appears to be cost-effective for health systems preventing highcost hospitalizations.

Research team

Lidiane Toledo, PhD Leading author

Erika Fialho, PhD Statistical analysis Co-author

Flávia Alves, PhD Co-author

Prof. Dr. Vikram Patel Senior co-author

Daiane Machado, PhD Project Leader Supervisor Senior co-author

Prof. Dr. Maurício Barreto Senior co-author

Keeping in touch

- <u>epilidi.toledo@gmail.com</u>
- <u>lidiane.toledo@fiocruz.br</u>

Acknowledgements

- We thank the CIDACS/FIOCRUZ data production team, collaborators, and CIDACS for funding our congress attendance.
- Funding: The National Institute of Mental Health of the National Institute of Health (Award number: R01MH128911).

