
Genome-wide association study of inflammatory proteins in ALSPAC Mothers and offspring

Neil Goulding
University of Bristol, UK
26th September 2024

Inspiring Awe & Wonder

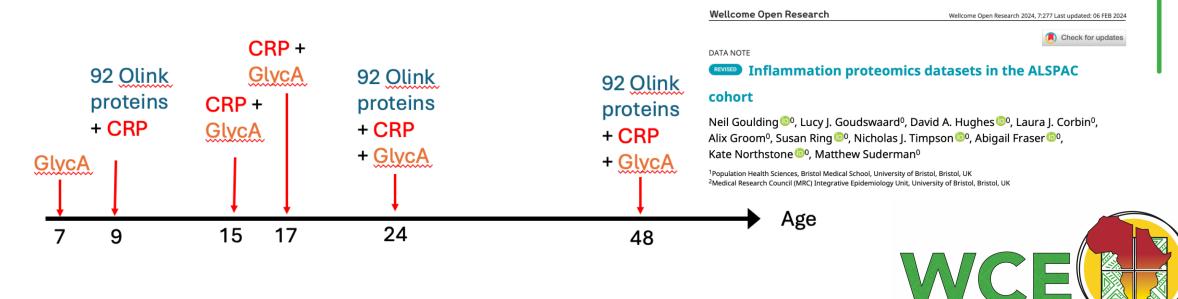
Background

- pQTL protein Quantitative Trait Loci, which are robust connections between a gene variant and the levels of a protein
- 2 main proteomic platforms –
 Olink and Somalogic

UKBB – 3,000 proteins;
 54,219 participants (Olink)

Plasma proteomic associations with genetics and health in the UK Biobank

https://doi.org/10.1038/s41586-023-06592-6
Received: 17 June 2022
Accepted: 31 August 2023
Published online: 4 October 2023
Open access


Benjamin B. Sun¹¹³, Joshua Chiou^{2,50}, Matthew Traylor^{2,50}, Christian Benner^{2,50}, Yi-Hsiang Hsu^{2,50} Tom G. Richardson^{3,50}, Praveen Surendran^{5,50}, Anubha Mahajan^{4,50}, Chloe Robins^{2,50}, Steven G. Vasquez-Grinnell^{2,50}, Liping Hou^{2,50}, Erika M. Kvikstad^{2,50}, Oliver S. Burren¹⁰, Jonathan Davitte¹, Kyle L. Ferber¹, Christopher E. Gillies¹⁰, Ása K. Hedman¹¹, Sile Hu², Tinchi Lin³, Rajesh Mikkilmien¹, Rosen Hondergrass², Corran Pickaring³, Bram Prins⁵⁰, Denie Baird¹, Chia-Yen Chen², Lucas D. Ward², Almee M. Deaton¹¹, Samantha Welsh¹⁰, Carissa M. Willis², Mick Lehner³, Matthia Arnold^{1,50}, Maria A. Wörheidel³, Karsten Suhre²⁰, Gabi Kastenmüller¹¹, Anurag Sethi²¹, Madeleine Cule²¹, Anil Raj²¹, Alnylam Human Genetics⁴, AstraZeneca Genomics Initiative⁴, Biogen Biobank Team⁴, Bristol Myers Squibb⁵, Genentech Human Genetics⁵, GlaxoSmithkline Genomic Sciences⁵, Prize Integrative Biology⁴, Population Analytics of Janssen Data Sciences⁶, Regeneron Genetics Center⁴, Lucy Burkitt-Gray⁵, Eugene Melamud⁴, Mary Helen Black⁶, Eric B. Fauman³, Joanna M. M. Howson³, Hyun Min Kang³, Mark I. McCarthy⁴, Paul Nioli⁹, Slavé Petrovski^{50,2}, Robert A. Scott⁶, Erin B. Famman³, Joanna M. M. Howson³, Hyun Min Kang³, Mark I. McCarthy⁴, Paul Nioli⁹, Slavé Petrovski^{50,2}, Robert A. Scott⁶, Erin B. Famina³, Davn M. Waterworth³⁴, Lyndon J. Mitnaul¹² Joseph D. Szustakowski^{60,2}, Radford W. Gibson¹⁰⁷, Melissa R. Miller²¹² &

Most studies have just looked at one timepoint in adults

Check for update:

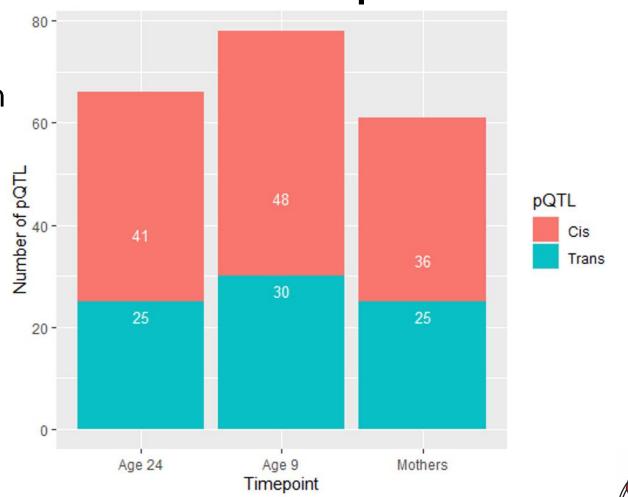
ALSPAC

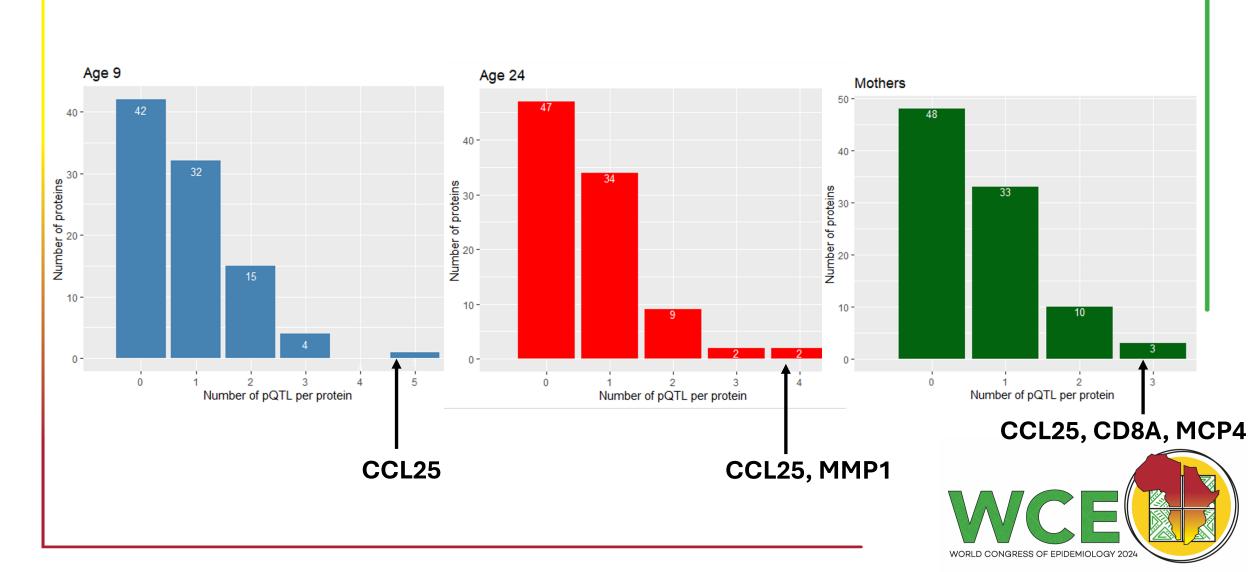
- CHILDREN 90%
- Avon Longitudinal Study of Parents and Children also known as Children of the 90s
- Genetics dataset contains > 8 million SNPs
- Proteomics 3000 mothers, 3000 9-year-olds and 3000 24-year-olds
- 92 inflammatory proteins Olink target 96 inflammatory panel

Aims

- 1. Identify pQTL across the lifecourse (ages 9, 24 and 48)
- 2. Which pQTL are robust across the lifecourse?
- 3. What proportion of UK Biobank pQTLs replicate at each of the three ALSPAC timepoints?
- 4. Investigate the relationship of pQTL with downstream phenotypes (e.g. asthma) at each timepoint
- This talk will focus on aims 1 and 2

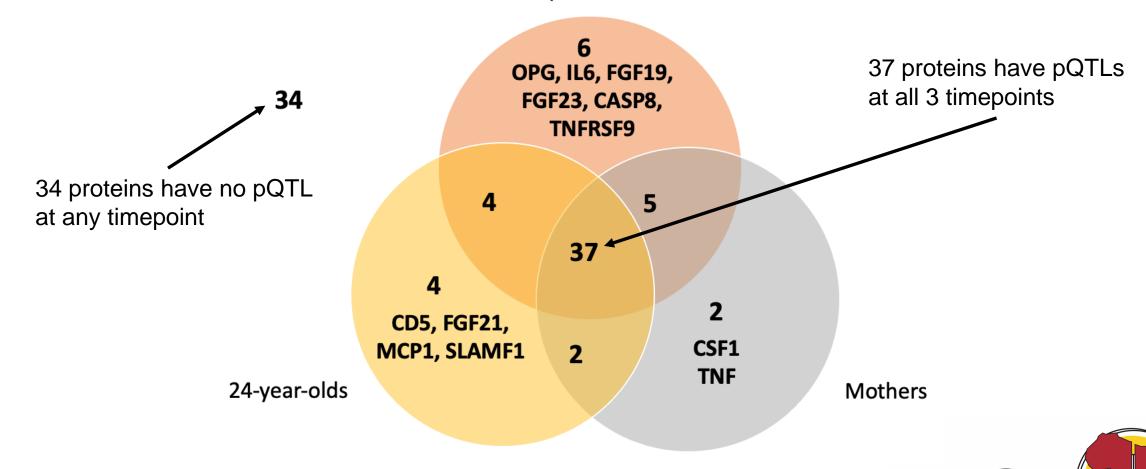
Methods


- Genome-wide testing performed using PLINK 2.3, fitting linear regression models between protein levels and 1000 Genomes imputed SNPs.
- Adjusted for age, sex and the top 10 genetic principal components.
- Extracted pQTLs with p< 5.3×10^{-10} , which is the threshold of genomewide significance (5×10^{-8}) adjusted for multiple testing (94 proteins).
- For each of the proteins there is a protein-coding gene. We defined
 associations with independent SNPs within 1 million base pairs (1 Mb)
 window of the gene boundaries of the protein-coding gene as cis-signals,
 and otherwise in trans (except GlycA)
- Clumped ± 1MB around leading variants using PLINK


Results – total number of pQTLs

 After clumping – 205 pQTL in total across all 3 timepoints (61% cis)

- Most pQTLs at age 9
- 59%-61% cis-pQTL at each timepoint
- N = 2426 (age 9)
- N = 2170 (age 24)
- N = 2120 (mothers)



Number of pQTLs per protein

Results 3

9-year-olds

Venn diagram of proteins that have pQTLs at each timepoint

Conclusions and Further Work

- Many of the proteins have pQTL that are robust across the lifecourse
- We have also found pQTL unique to each time point
- Is genetic architecture across development more complicated than initially thought?
- Next step replication in UKBB
- Investigate the relationship of pQTL with downstream phenotypes (e.g. asthma) at each timepoint

Acknowledgements

 Collaborators: Matt Suderman (Bristol), Tom Richardson (Bristol and GSK) and Daisy Crick (Melbourne)

Inspiring Awe & Wonder

