© The University of Queensland 2024 This content is protected and may not be shared, uploaded, or distributed.

Greenspace and health in the UK Biobank Cohort

Nick Osborne and colleagues

University of Queensland, Australia

Chinonso Christian Odebeatu, Darsy Darssan, Joana A. Revez, Charlotte Roscoe, Phu Do, Simon Reid

Over half a million participants across England, Wales and Scotland

Exposures and outcomes

- Expsoures
 - NDVI satellite derived
 - % greenspace
 - Distance to parks/greenspace
 - Type of greenspace, from land use mapping including
 - Private garden
 - Public greenspace
 - Other.....natural, camping, golf course, playing field

Outcomes

- Cancer outcomes from cancer registry
- Vitamin D
- Metabolic syndrome

0 0.1 0.2 0.4 0.6 0.8 Kilometer

OSMM Greenspace category

- Private Garden
- Public Park Or Garden
 Amenity Transport
- Allotments Or Community Growing Spaces
- Amenity Residential Or Business
- Bowling Green
- Camping Or Caravan Park
- Cemetery Golf Course
- Institutional Grounds
- Land Use Changing
- Natural
- Other Sports Facility
- Play Space
- Playing Field
- Religious Grounds
- School Grounds
- Tennis Court

-1 -02 -0.1 0 0.1 0.2 0.3 0.4 0.5 0.8 0.7 0.8 0.9

Increasing greenspace increased vitamin D – cross-sectional

Cancer type	Cases	Total greenspace	HR (95% CI)	Private residential gardens	HR (95% CI)	Other greenspace types	HR (95% CI)
ORC with prostrate	13,681	(0.96 (0.94 - 0.99)	HI-H	0.93 (0.90 - 0.97)	•	0.97 (0.94 - 1.00)
ORC without prostrate	9,550	HI-L	0.95 (0.92 - 0.98)	⊢ ♦-1	0.92 (0.88 - 0.96)	++-	0.96 (0.92 - 1.00)
Prostate	4,130	⊨ ♦=1	0.98 (0.94 - 1.03)	⊢♦ −−1	0.95 (0.89 - 1.02)	⊢♦ -1	1.00 (0.94 - 1.05)
Breast	3,793	⊢◆-1	0.95 (0.90 - 1.00)	⊢♦ −1	0.91 (0.84 - 0.98)	⊢ ♦−1	0.96 (0.90 - 1.03)
Colorectum	2152	⊢ •	0.99 (0.93 - 1.06)	⊢_	0.99 (0.89 - 1.09)	F	1.00 (0.92 - 1.08)
Uterus	637	⊢	0.86 (0.76 - 0.96)	⊢ •	0.80 (0.67 - 0.96)	⊢	0.85 (0.73 - 0.99)
Kidney	501	⊢	0.98 (0.86 - 1.12)	⊢	0.97 (0.79 - 1.19)	⊢	0.99 (0.84 - 1.16)
Pancreas	441	⊢	0.90 (0.78 - 1.03)	⊢	0.81 (0.66 - 1.00)	⊢	0.94 (0.80 - 1.11)
Oesophagus	411		1.01 (0.87 - 1.16)	⊢	1.05 (0.84 - 1.31)	⊢	0.97 (0.83 - 1.33)
Ovary	405	⊢	0.91 (0.78 - 1.06)	⊢	0.92 (0.72 - 1.17)	⊢	0.85 (0.70 - 1.05)
Multiple myeloma	385	⊢	0.94 (0.81 - 1.08)	⊢	0.84 (0.67 - 1.06)		0.99 (0.83 - 1.19)
Stomach	272	⊢	0.99 (0.83 - 1.18)	⊢	0.97 (0.73 - 1.27)	••	1.02 (0.82 - 1.26)
Liver	231	⊢	0.85 (0.71 - 1.02)	↓	0.81 (0.61 - 1.08)	► • • • • • • • • • • • • • • • • • • •	0.83 (0.65 - 1.05)
	0.5	1	1.5 0.5	1	1.5 0.5	1	1.5

Exposure-response curve plots with restricted cubic spline (3 degree of freedom)

Mediator	Total greenspace		Private residential gardens		Other greenspace types	
	Proportion mediated (95 % CI)	Р	Proportion mediated (95% CI)	Р	Proportion mediated (95% CI)	Р
Physical activity	0.01 (-0.002, 0.017)	0.11	0.01 (-0.002, 0.014)	0.16	0.01 (-0.003, 0.022)	0.16
Deseasoned 25(OH)D	0.02 (-0.003, 0.052)	0.08	0.02 (-0.001, 0.043)	0.06	0.03 (-0.025, 0.090)	0.27
PM _{2.5}	0.08 (-0.236, 0.402)	0.61	0.07 (-0.242, 0.379)	0.66	0.07 (-0.259, 0.403)	0.67
NO_2	-0.41 (-0.756, -0.079)	0.01	-0.36 (-0.644, -0.078)	0.01	-0.52 (-1.073, 0.031)	0.06

• Greenspace within immediate vicinity of residential addresses may capture the mitigation of adverse impacts of air pollutants such as NO₂ (Kayyal-Tarabeia et al., 2022; Markevych et al., 2017)

Greenspace and Metabolic Syndrome

Shift workers (including nighttime shift workers had higher vitamin D levels than non-shift workers.....spend time outside in afternoons?