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Failure Due to Lack of Efficacy is a Major Challenge in Drug

Development
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~$2.6bn in
R&D costs

per drug
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} Most Drugs in Clinical Development Fail to Become Medicines

Evidence to Increase our Probability of Success is Much Needed
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Drugs with human genetic evidence

>2x more likely to be successful.
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* Relative Success:

*  Varies among therapy
areas and development
phases

* Improves with
increasing confidence in
the causal gene

* Largely unaffected by:
*  Genetic effect size
*  Minor allele frequency

*  Year of discovery
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} Genetics and Genomics From Discovery to Development
UK Biobank Provides Key Insights Across All Phases of GSK R&D
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} Our Ability to Bring Genetic Insights to Drug Development Has
Transformed

A low frequency glucose lowering variant in Could we use GLPIR variant to recapitulate
GLPIR associated with type 2 diabetes and efficacy, identify potential indications or safety
cardiovascular protection flags for GLPIR-agonists?
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target validation identifies a glucose-lowering GLPIR variant protective 'o am
for coronary heart disease. Sci Transl Med. 2016;8(341):341ra76. G S K

doi:10.1126/scitranslmed.aad3744
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At-Scale Phenomics
Defining and Validating Reproducible Phenotyping for 313 Diseases in UKB

Log,,-transformed sex-standardised period prevalence for UKB vs.
CALIBER; Prevalence by Country; Prevalence by Economic Deprivation

UK Biobank
data sources
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} Epidemiology in Action

Integration of Genetics and Observational Epidemiology using Plasma Proteomics
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Disease GWAS

EUR Disease Cases vs. No Disease
Case #s: 229-144,466

Protein Quantitative Trait Loci Regenie logistic regression

(pQTL)

Described by Sun et.al. in ‘Plasma Protein
Proteomic associations with genetics and Measurement Disease
health in the UK Biobank? Phenotype
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Cox-Proportional Hazards (CPH) models
for each protein-disease pair with >= 20
events
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} Time Makes a Difference in Understanding Disease
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Validation

Evidence from CPH models provides an
additional layer of evidence in addition to

Novelty o000
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Integration of time-to-event evidence provides a new layer of information not
easily investigated in genetics:

... knowledge that the protein is associated not just with susceptibility to the
disease, but that the protein is associated with the rate at which individuals
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MRC

Epidemiology

Disease Prediction and Potential Patient Selection Unit
Proteomic Signatures Improve Risk Prediction for Common and Rare Diseases
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UK Biobank is one of the world’s foremost biomedical resources, enabling cutting-edge
research to improve our understanding of the determinants of health and disease

We leverage the entirety of UK Biobank data to accelerate diverse research activities
across the Research and Development pipeline

Insights obtained from UK Biobank greatly improve our ability to discover and develop
safe, effective medicines to patients worldwide
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