THE GENETIC ARCHITECTURE OF AMYGDALA NUCLEI

NORMENT Norwegian Centre for

Mental Disorders Research

Mary Mufford

University of Cape Town

Supervisors: Dr Shareefa Dalvie, Prof Dan Stein, Prof Raj Ramesar and Dr Dennis van der Meer

MY PHD 2019-2021

Norsk The Project Databank > Log in Q Search

Menu

OME | CALLS FOR PROPOSALS - APPLICATION RESULTS | INTPART INTERNATIONAL PARTNERSHIPS FOR EXCELLENT EDUCATION, RESEARCH AND INNOVATION

COMPLETED SEE RESULT

INTPART International Partnerships for Excellent Education, Research and Innovation

The Genetic Architecture of Amygdala Nuclei

Mary S Mufford ¹, Dennis van der Meer ², Tobias Kaufmann ³, Oleksandr Frei ⁴, Raj Ramesar ⁵, Paul M Thompson ⁶, Neda Jahanshad ⁶, Rajendra A Morey ⁷, Ole A Andreassen ⁸, Dan J Stein ⁹, Shareefa Dalvie ⁵

Affiliations + expand PMID: 37391117 DOI: 10.1016/j.biopsych.2023.06.022

MEGAN CAMPBELL 2021-2024

> Acta Neuropsychiatr. 2023 Aug 24:1-8. doi: 10.1017/neu.2023.32. Online ahead of print.

Distributed genetic effects of the corpus callosum subregions suggest links to neuropsychiatric disorders and related traits

Megan L Campbell ¹ ², Shareefa Dalvie ³, Alexey Shadrin ⁴, Dennis van der Meer ⁴ ⁵, Kevin O'Connell ⁴, Oleksander Frei ⁴, Ole A Andreassen ⁴, Dan J Stein ¹, Jaroslav Rokicki ⁴ ⁶

Affiliations + expand

PMID: 37612147 PMCID: PMC10891296 (available on 2025-02-24) DOI: 10.1017/neu.2023.32

OLIVIA WOOTTON 2021-2024

> Sci Rep. 2024 Jul 4;14(1):15356. doi: 10.1038/s41598-024-66085-y.

Genomic insights into the shared and distinct genetic architecture of cognitive function and schizophrenia

Olivia Wootton ¹, Alexey A Shadrin ², Thomas Bjella ², Olav B Smeland ², Dennis van der Meer ² ³, Oleksandr Frei ² ⁴, Kevin S O'Connell ², Torill Ueland ² ⁵, Ole A Andreassen ², Dan J Stein ⁶ ⁷, Shareefa Dalvie ⁸

Affiliations + expand

PMID: 38961113 PMCID: PMC11222449 DOI: 10.1038/s41598-024-66085-y

Visuospatial Processing

А

Verbal Analytic Reasoning

Decision/Reaction Time

Subcortical brain region involved in emotion

Family based heritability=34–59%

SNP based h²~9-17%

Few genetic variants associated

Distinct nuclei

- Cytoarchitecture
- Neurotransmitters
- Connectivity
- Function

Satizabal et al., 2019, Saygin et al., 2017

Whether increased phenotypic specificity through segmentation of the amygdala into its nuclei aids:

AIMS

- Genetic discoverability
- Shared genetic architecture
- Informative biological pathways

Segmented the amygdala into nine nuclei (FreeSurfer v6.1)

Genome-wide association analyses (PLINK v2)

SNP-based heritability (GCTA)

Estimates of polygenicity, discoverability and power (MiXeR)

Genetic correlations (LDSC) and polygenic overlap (MiXeR) across nuclei

Shared loci (cFDR) between psychiatric disorders

Functional annotation (FUMA)

Mufford, Mary S., et al. "The Genetic Architecture of Amygdala Nuclei." Biological Psychiatry (2023)

OBJECTIVES

- 42k participants
- MRI data
- Genotyping data
- 96% European ancestry
- Mean age of 64.26 years
- 52% female

CENTRAL NUCLEUS

SNP-BASED HERITABILITY & GENETIC CORRELATION

-93 -83.45-73.9-64.35-54.8-45.25-35.7-26.15-16.6 -7.05 2.5 12.05 21.6 31.15 40.7 50.25 59.8 69.35 78.9 88.45 98

POWER, DISCOVERABILITY & POLYGENICITY

MIXER

SHARED GENETICS (FDR)

SUMMARY

Nuclei segmentation aids genetic discoverability

Divergent cytoarchitectures of the amygdala nuclei are driven by both overlapping and unique genetic influence

Justification for studying these nuclei separately in future;

- Heritability
- Power for discovery
- Unique genetic contributions

Highlights the importance of trans-ancestry research

- E.g. UK Biobank Research Analysis Platform
- Provides access to computational power not available locally
- Financial support in a resource-constricted environment
- The community forum can provide guidance
- Allows African researchers to navigate the UKB resource independently
- Allow us to address research questions that are highly relevant to the continent

ACKNOWLEDGEMENTS

- University of Cape Town
 - > Dr Shareefa Dalvie
 - Prof Dan Stein
 - Prof Raj Ramesar

• NORMENT

- Dr Dennis van der Meer
 Prof Ole' Andreasen
- Oleksandr Frei
- ENIGMA-PTSD
 - Prof Rajendra MoreyLexi Baird

THANK YOU!

REFERENCES

- American Psychiatric Association. 2013. Diagnostic and Statistical Manual of Mental Disorders. American Psychiatric Association. 451-460 p.
- Amunts K et al., 2005. Cytoarchitectonic mapping of the human amygdala, hippocampal region and entorhinal cortex: Intersubject variability and probability maps. In: Anatomy and Embryology., p 343–352.
- Andreassen OA et al., 2013. Improved Detection of Common Variants Associated with Schizophrenia and Bipolar Disorder Using Pleiotropy-Informed Conditional False Discovery Rate. PLoS Genet. 9: e1003455.
- Bulik-Sullivan B et al., 2015. LD score regression distinguishes confounding from polygenicity in genome-wide association studies. Nat. Genet. 47: 291–295.
- Manolio TA. 2010. Genomewide Association Studies and Assessment of the Risk of Disease. N. Engl. J. Med. 363: 166–176.
- Morey RA et al., 2012. Amygdala volume changes in posttraumatic stress disorder in a large case-controlled veterans group. Arch. Gen. Psychiatry 69: 1169–1178.
- Nievergelt CM, et al., 2018. Largest genome-wide association study for PTSD identifies genetic risk loci in European and African ancestries and implicates novel biological pathways. bioRxiv: 458562.
- Purcell S et al., PLINK: A Tool Set for Whole-Genome Association and Population-Based Linkage Analyses. Am. J. Hum. Genet. 81: 559–575.
- Saygin ZM et al., 2017. High-resolution magnetic resonance imaging reveals nuclei of the human amygdala: manual segmentation to automatic atlas. Neuroimage 155: 370–382.
- Swanson LW. 2006. The Amygdala and Its Place in the Cerebral Hemisphere. Ann. N.Y. Acad. Sci. 985: 174–184.
- Veer IM et al., 2015. Evidence for smaller right amygdala volumes in posttraumatic stress disorder following childhood trauma. Psychiatry Res. Neuroimaging 233: 436–442.
- Watanabe K et al., 2017. Functional mapping and annotation of genetic associations with FUMA. Nat. Commun. 8: 1826.

NUCLEI

TOT, whole amygdala; LAT, Lateral nucleus; CAT, Corticoamygdaloid transition area; BAS, Basal nucleus; AAA, Anterior Amygdaloid Area; CEN, Central nucleus; ACC, Accessory basal nucleus; PAR, Paralaminar nucleus; MED, Medial nucleus; COR, Cortical nucleus

UKBB QC

	European	
Filtering steps	# Subjects	#SNPs
START: Version 3 imputed bgen files provided by UKBB**	487,411	89,387,505
Remove participants without MRI data	42,067	89,387,505
Remove participants with missing covariates	41,035	89,387,505
Remove duplicate participants	41,035	89,387,505
Remove unused factor levels	41,035	89,387,505
Keep validated Europeans only	35,660	89,387,505
Genotyping filters: SNPs only, poorly imputed SNPs (r2<0.5), low minor allele frequency (<0.1%), genotyping rate (<0.1), Hardy-Weinberg Equilibrium (p<1x10-9), duplicate markers	35,660	12,245,112
Remove participants with missing Euler numbers	35,657	12,245,112
Remove participants with Euler number outliers (4SD)	35,186	12,245,112
Remove participants with a disorder affecting the brain	32,215	12,245,112
Remove participants for which the amygdala nuclei segmentation failed	31,971	12,245,112
Remove participants with amygdala nuclei volume outliers for each hemisphere (4SD)	31,714	12,245,112
Remove participants with ICV outliers (4SD)	31,690	12,245,112
Remove participants without ancestry information	N/A	N/A
Total	31,690	12,245,112

Nuclei volume vs number of hits

Nuclei size vs heritability

JUSTIFICATION FOR COMBINING HEMISPHERES

Genetic correlation

• rg between, all 0.56-0,91 p < 5.27e-11

Volumetric correlation

• Raw Pearson's rg between 0.54-0.86, all $p < 2.2 \times 10^{-16}$

Heritability

•
$$h^{2}$$
 is higher when hemispheres are combined
• AAA - $h^{2}_{combined} = 0.23$, $h^{2}_{right} = 0.15$, $h^{2}_{left} = 0.21$
• ACC - $h^{2}_{combined} = 0.22$, $h^{2}_{right} = 0.26$, $h^{2}_{left} = 0.14$
• BAS - $h^{2}_{combined} = 0.24$, $h^{2}_{right} = 0.13$, $h^{2}_{left} = 0.12$
• CAT - $h^{2}_{combined} = 0.11$, $h^{2}_{right} = 0.13$, $h^{2}_{left} = 0.09$
• CEN - $h^{2}_{combined} = 0.16$, $h^{2}_{right} = 0.11$, $h^{2}_{left} = 0.11$
• COR - $h^{2}_{combined} = 0.18$, $h^{2}_{right} = 0.15$, $h^{2}_{left} = 0.11$
• LAT - $h^{2}_{combined} = 0.22$, $h^{2}_{right} = 0.24$, $h^{2}_{left} = 0.14$
• MED - $h^{2}_{combined} = 0.14$, $h^{2}_{right} = 0.11$, $h^{2}_{left} = 0.14$
• MED - $h^{2}_{combined} = 0.22$, $h^{2}_{right} = 0.16$, $h^{2}_{left} = 0.18$
• TOT - $h^{2}_{combined} = 0.27$, $h^{2}_{right} = 0.25$, $h^{2}_{left} = 0.24$