The relationship between lifecourse traumatic events (TE), HIV/AIDS and neurocognitive impairment (NCI) in older adults in rural South Africa

Sumaya Mall

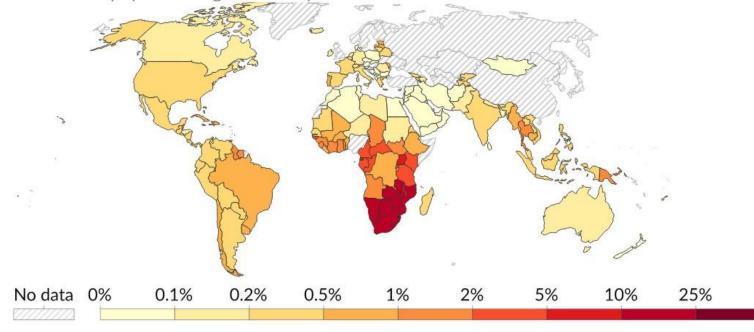
Nkgodi Kupa

Zvifadzo Matsena Zingoni

Ryan Wagner

Lindsay Kobayashi

Molly Rosenberg


Kathleen Kahn

HIV prevalence, 2022

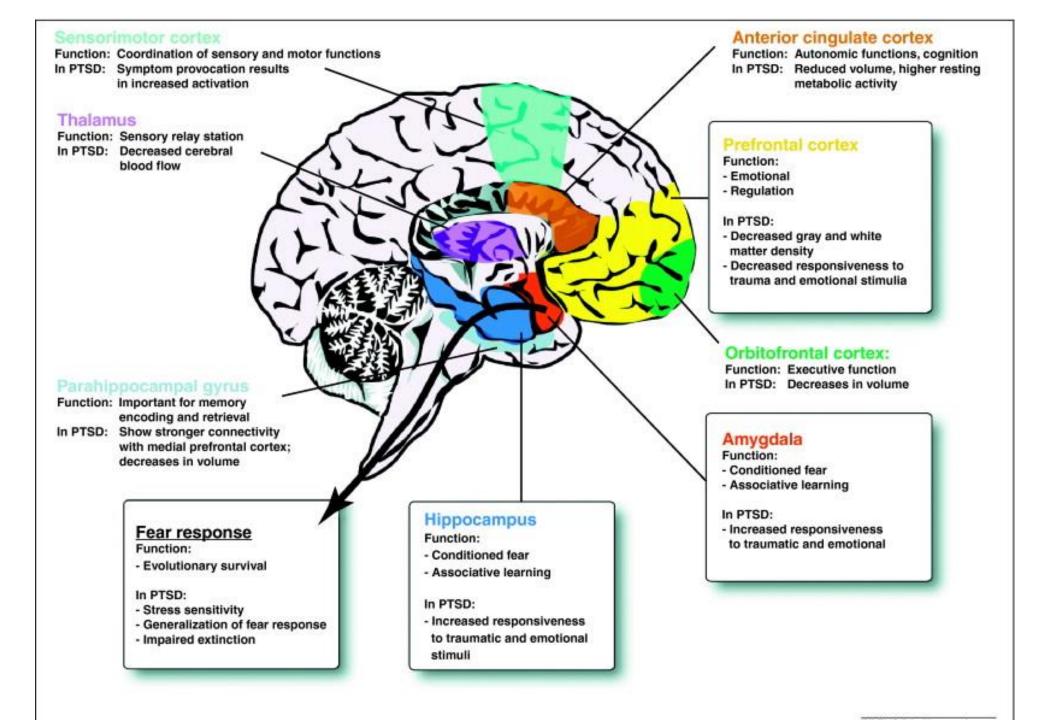
Data source: UNAIDS (2023)

OurWorldInData.org/hiv-aids | CC BY

Background

- South Africa has the largest HIV epidemic in the world, with approximately 7.7 million People Living with HIV/AIDS (PLWHA).
- Since the roll-out of Highly Active Antiretroviral Therapy (HAART), PLWHA have been living longer and therefore require attention for a range of comorbid diseases.
- Comorbidities include Tuberculosis (TB), cryptococcal meningitis and neurocognitive impairment (NCI), impairment in cognitive domains measured by a comprehensive neuropsychological battery of tests including motor functioning, speed of information, executive functioning, working memory, learning, memory and verbal fluency
- South Africa has an epidemic of traumatic events (TE) including crime, violence and institutional violence. TE can be linked to NCI.

What is NCI in HIV?



How do TE link to HIV and NCI?

• TE include sexual or physical assault as well as emotional abuse or neglect

• Data suggests that TE, particularly a 'dose response' relationship are associated with a range of pathologies including HIV

• Spies et al (2020) examined the relationship between potentially traumatic or stressful events, HIV infection and neurocognitive impairment (NCI):

Aim

This study aimed to determine the combined (interaction) effect of life-course TE and HIV infection on the NCI of adult South Africans using the Health And Aging in Africa: A Longitudinal Study of an INDEPTH Community in South Africa (HAALSI) study

Methods

- HAALSI is a prospective study of adults age 40 and above recruited from the Agincourt sub district embedded within a Health and Demographic Site (HDSS)
- Currently consisting of 4 waves and 5059 participants and has collected data on a range of comorbidities including hypertension, strokes and NCI (measured by Oxford Cognitive Screen (OCS plus)
- Our analytical sample consists of those who have complete TE data measured by English Longitudinal Study of Aging
- A score ≥ 1.5 standard deviations (SD) below the mean of the baseline cognitive function distribution on the cognitive assessment (managing to know the date, day, month and president) will mean no NCI while a score below the means some degree of NCI)
- NCI is analysed as a z-standardized latent variable capturing time orientation, episodic memory, and numeracy

- 1). Ever experiencing a natural disaster
- 2). Ever experiencing a life-threatening serious physical attack
- 3). Ever been the victim of sexual abuse
- 4). Ever been a victim of sexual abuse
- 5). Having parents unemployed for over 6 months
- 6). Ever experiencing parents fighting or arguing
- 7). Parents on substance abuse
- 8). Ever experience physical abuse by parents
- 9). Ever witnessed death in non-combat
- 10). Ever witnessed the death of relative or friend
- 11). Ever provided long-term care to disabled
- 12). Ever experienced severe financial hardship

Socio-demographic characteristics of the sample:

- Median age of participants was 64, 53% of the sample were female, 44 percent with no formal education and 72.63% of the sample were unemployed, 69.40% were South African.

Health status of the sample:

- 41.28% of the sample were HIV positive, 37.79% were hypertensive and 0.67% had experienced a stroke

<u>TE</u>

- 58.74% had experienced financial hardship
- 39.73% had experienced natural disaster
- 23.30 had ever witnessed the death of a relative or friend

Prevalence of NCI is 7%

Characteristics	Categories	No NCI n %	NCI n %	<i>p</i> -value
Gender	Male Females	1527(92.10) 2034(91.79)	131(7.90) 182(8.21)	0.724
Education	No formal education Some primary school (1-7 years) Some secondary school(8+ years)	1577(85.01) 1375(95.55) 852(97.71)	278(14.90) 64(4.45) 20(2.29)	<0.0001
Employment status	Employed (full or part- time) Not working Homemaker	676(97.97) 2712(89.42) 415(93.89)	14(2.03) 321(10.58) 27(6.11)	<0.0001
Age Mean (SD) Median (IQR)	Mean: ±65.16;SD(12.59) IQR): 64 (55;74)	64.2 (12) 64 (55-74)	75.04 (14.1) 64 (55-74)	<0.0001 <0.0001

Characteristics	Categories	Univariate Analysis		Adjusted Analysis		Interaction model	
		OR(95%CI)	P-value	Adjusted OR (95%CI)	P-value	Adjusted OR (95%CI)	P-value
Gender	Male	1(base)		1(base)		1(base)	
	Females	1.04(0.82-1.31)	0.724	0.96(0.73-1.26)	0.799	0.96 (0.73-1.27)	0.815
Education	No formal education	1 (base)		1 (base)		1(base)	
	Some primary school (1-7 years)	0.26(0.19-0.35)	<0.0001	0.36 (0.25-0.52)	<0.0001	0.36 (0.25-0.52)	<0.0001
	Some secondary school(8+ years)	0.13 (0.08-0.21)	0.001	0.43(0.24-0.75)	0.003	0.41 (0.23-0.73)	<0.0001
Employment status	Employed (full or part-time)	1 (base)		1 (base)		1(base)	
	Not working	5.71 (3.32-9.82)	<0.0001	1.99 (1.06-3.74)	0.031	1.98 (1.05-3.72)	0.033
	Homemaker	3.14 (1.62-6.05)	0.001	1.19 (0.56-2.50)	0.645	1.14 (0.54-2.42)	0.715
Age		1.07 (1.06-1.08)	<0.0001	1.05 (1.04-1.07)	<0.0001	1.05 (1.04-1.15)	<0.0001
Household wealth index	Poorest	1 (base)		1 (base)		1(base)	
	Average	1.13 (0.90-1.41)	0.274	1.08 (0.82-1.43)	0.572	1.07 (0.81-1.41)	0.612
	Richest	0.90 (0.58-1.40)	0.660	0.96 (0.56-1.64)	0.903	0.95 (0.56-1.16)	0.860
Nationality of origin	RSA	1 (base)		1 (base)		1(base)	
	Mozambique	1.97 (1.58-2.45)	<0.0001	1.46 (1.09-1.95)	0.009	1.45 (1.08-1.93)	0.011
Marital Status	Unmarried	1 (base)		1 (base)		1(base)	
	Married	0.43 (0.34-0.54)	<0.0001	0.63 (0.47-0.84)	0.002	0.63 (0.47-0.84)	0.002
Hypertension	No	1 (base)		1 (base)		1(base)	
	Yes	1.12 (0.89-1.40	0.322	0.86 (0.47-1.49)	0.331	0.86 (0.64-1.15)	0.325
HIV Status	Negative	1 (base)		1 (base)		1(base)	
	Positive	2.06 (1.65-2.57)	<0.0001	1.08 (0.82-1.42)	0.559	0.79 (0.533-1.17)	0.252
Stroke	No	1 (base)		1 (base)		1(base)	
	Yes	2.93 (1.18-7.27)	0.020	2.62 (0.72-0.84)	0.142	2.67 (0.72-9.85)	0.138
Composite trauma	No	1 (base)		1 (base)		1(base)	
	Yes	0.14 (0.11-0.17)	< 0.0001	0.14 (0.11-0.18)	<0.0001	0.10 (0.07-0.15)	<0.0001
HIV Status# Composite trauma	No					1(base)	
	Yes					1.78 (1.04-3.04)	0.034

Before adjustment of relevant confounders, HIV-positive participants had the highest proportion of NCI (n=208, 12.06%) compared to HIV-negative participants, and this was statistically significant (p-value=<0.001).

• After adjusting for potential confounders, the odds of having NCI decreased (AOR=0.36; 95%CI: 0.25-0.52) and among those who had some primary school (AOR=0.43; 95%CI: 0.24-0.75) (1-7 years) and some secondary school (8+ years), respectively compared to those with no education.

• The odds of having NCI increased by 99% (AOR=1.99; 95%CI: 1.06-3.74) among those who were not working compared to those who are employed.

• After adjustment, a one-year increase in age was associated with an increase in the odds of having NCI (OR=1.05; 95%CI: 1.04-1.07).

• Mozambique nationals had an increased odds of 1.46 (95%CI: 1.09-1.95) of having NCI compared to SA nationals

• In the interaction model we found no association between stroke, hypertension and HIV

Discussion

- The high levels of little formal education and unemployment (44.42%) and 72.63% (respectively) are not surprising and are parallel to national South African estimates that have been reported over time
- Higher education was also said to have protective effects against NCI deficits as well as for the particular cognitive domains of executive functioning, learning, and information processing speed
- Those without composite trauma had reduced odds (AOR=0.10; 95%CI: 0.07-0.15) of having NCI compared to those who have composite trauma. This finding are in line with previous studies, which found that life-course events such as financial hardship, physical abuse, the death of a spouse or partner, and stress were all significantly associated with worse neurocognitive performance and functional decline

Conclusion

• TE screening is not standardized and can also be under – reported

• There is potential to extend beyond a cross-sectional analysis using later waves of HAALSI

• If TE continue to suggest relationships with NCI given the numerous confounders, TE intervention could inform part of treatment

• Study suggests lessons for the value of HDSS

References

- Joska JA, Westgarth-Taylor J, Myer L, Hoare J, Thomas KGF, Combrinck M, et al. Characterization of HIV-Associated Neurocognitive Disorders Among Individuals Starting Antiretroviral Therapy in South Africa. AIDS Behav. 2011 Aug 8;15(6):1197–203.
- Kessler RC, Aguilar-Gaxiola S, Alonso J, Benjet C, Bromet EJ, Cardoso G, et al. Trauma and PTSD in the WHO World Mental Health Surveys. Eur J Psychotraumatol [Internet]. 2017 Oct 27;8(sup5). Available from: https://www.tandfonline.com/doi/full/10.1080/20008198.2017.1353383
- Lawler K, Mosepele M, Ratcliffe S, Seloilwe E, Steele K, Nthobatsang R, et al. Neurocognitive impairment among HIV-positive individuals in Botswana: a pilot study. J Int AIDS Soc. 2010 Jan 20;13(1):15–15.
- Spies G, Ahmed-Leitao F, Fennema-Notestine C, Cherner M, Seedat S. Effects of HIV and childhood trauma on brain morphometry and neurocognitive function. J Neurovirol [Internet]. 2016 Apr 30;22(2):149–58. Available from: http://link.springer.com/10.1007/s13365-015-0379-2