

Mosquito Ecology and Malaria Transmission in Guinea Savanna Zone in Taraba State, Nigeria

by

DR TAJUDEEN BABATUNDE LAMIDI

Biological Sciences Department, Federal Polytechnic Bali, Nigeria

tajudeenlamidi68@gmail.com

Presented at the World Congress of Epidemiology 2024, School of Public Health, University of Cape Town

Thursday 26th September, 2024

Session Theme: Infectious disease epidemiology

INTRODUCTION

- Mosquitoes of the family Culicidae are considered a nuisance and a major public health problem, because their females feeds on human blood and thus transmit extremely harmful diseases, such as malaria, yellow fever and filariasis [1].
- They are estimated to transmit diseases to more than 700 million people annually and responsible for the death of about 1 in 17 people [2].
- Effective transmission of mosquito-borne disease requires successful contact between female mosquitoes and their hosts [2].
- Among Anophelinae, the members of the genus Anopheles are best known for their role in transmitting malaria and filariasis worldwide [3].
- Of these diseases, malaria caused by Plasmodium parasite is one of the greatest killer diseases in the world [4].

INTRODUCTION CONTD.

- [5] reported an estimated 249 million cases of malaria in 2022 globally, out of which 90.0 % cases with 92% deaths were in Africa continent.
- Nigeria accounted for about 27% of this global burden [5]
- Similarly, cases had been reported in Taraba state, North-east zone Nigeria [6] [7] [8].
- The distribution pattern, transmission and intensity of the disease are dependent on the degree of urbanization and the distance from vector breeding sites [9].
- The endemicity of malaria in any region is determined by indigenous Anopheles mosquitoes, abundance, feeding, resting behavior and their Plasmodium infectivity, among other factors [10] [5].

AIM AND OBJECTIVES

- The aim of the Study The study is to investigate the population structure/dynamics, longevity and infectivity of Anopheles species in relation to malaria transmission in Bali district of Bali L.G.A of Taraba state. The specific objectives are:
- i. To identify the mosquito species prevalent in Bali district
- ii. To determine the population structure of the mosquito species in Bali district
- iii. To determine Man-Biting Rate of the Anopheles species
- iv. To determine the infection rate of Anopheles with Plasmodium (malaria parasite)
- v. To determine the longevity and life expectancies of the identified Anopheles species

MATERIALS AND METHODS

- **Study Area**: Taraba State is located between longitude 8.5° 11.6°E and latitude 6.5° 9.5°N (8° 00'N and 10° 30'E coordinates) in the north-eastern geopolitical zone of Nigeria with a size of 54,473 square kilometers representing 5.89% of the country landmass [11].
- Mosquito Sampling: Using standard method as described by [4].
- Laboratory Examination of Mosquitoes
- Morphological Identification and Sorting out of Mosquitoes
- Determination of Parity [12].

MATERIALS AND METHODS CONTD.

- Estimation of Infective (Sporozoite) Rate of Anopheles using CSP ELISA
- Determination of Longevity/Survival Rate as explained by [13]
- **Determination of Vectorial Capacity** using $C = ma^2p^n$ / -lnp; where m=density to man, a=Human Blood index, p^n =probability of surviving incubation, I/-lnp = longevity/life expectancy
- Data Analysis using ANOVA
- Ethical Consideration from Bali LG/Health Authority

RESULTS

Table 1: Abundance of mosquito species in the study

Mosquito Study communities within Ball district Total							
Mosquito species	Daniya Bali No (%)	Fundalara No (%)	Gazabubarkeji No (%)	(%)			
Anopheles gambiae	85 (87.5)	316 (97.2)	188 (96.9)	589 (95.9)			
Mansonia uniformis	7(7.4)	3 (0.9)	1 (0.5)	11 (1.8)			
Culex quinquefasciatus	2 (2.1)	6 (18)	4 (2.1)	12 (1.9)			
Aedes aegypti	1 (1.1)	0 (0.0)	1 (0.5)	2 (0.3)			
Total (%)	95(15.5)	325 (52.9)	194 (31.6)	614			

Table 2: Man-Biting Rate and Infective Biting Rate of Anopheles

gambiae							
Seasons	No (N)	f/fed (FF)	Man Night (MN)	MBR (<u>FFXHBI /</u> MN)	Sporozoite rate (SR)	IBR (MBR x SR)	
Wet	413	186	100	1.86	0.005	0.01	
Dry	72	5	88	0.07	0	0	
Total	485	191	188	1.93	0.005	0.01	

Table 3: Seasonal variation in survivorship and longevity of *Anopheles gambiae* mosquitoes in Bali, June-December, 2018

Seasons	No dissected N	No parous P	Proportion Parous (P/N)	Probability Of daily Survival, P = √ P / N	Life Expectancy, L=1/log p (Days)
Wet	160	92	0.57	0.75	8.00
Dry	17	08	0.47	0.68	5.90
Total	177	100	1.04	1.43	13.90
Mean	88.5 (+0.57)	50 (+0.59)	0.44 (+0.35)	0.56 (+0.13)	3.97 (+0.36)

RESULTS CONTD.

Table 4: Seasonal variation in infection probability and vectorial capacity of Anopheles gambiae in Bali district, June – December, 2018

Season	Numbe collected N	Room occupant O	Density per man N/O	Atm. Tempera ture (°C)	Duration of sporogony, n (Days)	Probability of surviving sporogony P ⁿ	Infecti ve life L-n (Day)	Vecto - rial capacity, C
Wet	413	100	4.13	27.0	10	0.06	-2	0.99
Dry	72	88	0.81	26.7	10.4	0.02	-4.5	0.04
Total	485	188	4.94	53.7	20.4	0.08	-6.5	1.03
Mean	242	94	3.11	26.85	10.2	0.04	-6.2	0.5
	(+0.50)	(+0.04)	(+0.55)	(+0.004)	(+0.013)	(+0.02)	(+0.3)	(+0.4)

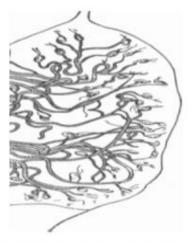


Fig. 4.1. Ovary of newly emerged female Anopheles with terminal tracheoles showing characteristic tight skeins indicating that female is nulliparous

(Source: Beklemishev et al., 1959)

Fig. 4.2. Ovary of female Anopheles after oviposition with terminal tracheoles showing net-like formation

(Source: Beklemishev et al., 1959)

CONCLUSION

- The occurrence of these species of mosquitoes in the study areas shows that the communities are at risk of contacting mosquito-borne diseases since all of them are proven vectors of dreadful diseases.
- The intervention efforts should be geared up mostly in the wet/hot season which is of epidemiological significance especially to malaria disease.
- This kind of study with ultimate objective of determining the potential rate of contact between infectious principal malaria vectors and susceptible hosts is very rare.
- The Anopheles gambiae population in Bali district was dominated by old mosquitoes due to high rates of daily survival.
- The longevity of this mosquito in this area with the favourable atmospheric temperature for Plasmodium development, make for high vectorial potential to the transmission of malaria.
- This information on the survivorship and vectorial capacity of Anopheles gambiae can pave way for more informed vector control measures

THANKS FOR LISTENING

