Investigating the association between genetically proxied immune checkpoint protein inhibition and cancer survival using Mendelian randomisation.

Tessa Bate University of Bristol, Bristol, UK 26/09/2024

Background

- Immune checkpoint proteins: PD-1, PD-L1
- Suppression of T cell activation
 - Evade anti-cancer immune responses
- **PD-1 inhibitors**, e.g. cemiplimab, dostarlimab, nivolumab, pembrolizumab
- **PD-L1 inhibitors**, e.g. atezolizumab, avelumab, durvalumab

© 2015 Terese Winslow LLC U.S. Govt. has certain rights

https://www.cancer.gov/about-cancer/treatment/types/immunotherapy/checkpoint-inhibitors

<u>Aim 1:</u> Investigate repurposing potential of ICIs in cancer treatment using MR

Cancer site	Current MHRA approvals [1]			
	PD-1 inhibitors	PD-L1 inhibitors		
Breast	Yes	Yes		
Lung	Yes	Yes		
Melanoma	Yes	No		
Ovary	No	No		
Prostate	No	No		

- Broader populations than current indications (breast, lung, melanoma)
- New indications (ovarian, prostate)

<u>Aim 2:</u> Investigate applicability of MR in cancer survival settings

Unit

Methods - data

1. Exposure data

UK Biobank serum protein expression GWAS (N = 54,219) [2]

2. Outcome data

Cancer site	Consortium	N participants	N events	Survival outcome
Breast	BCAC [3]	91,686	7,531	Breast cancer-specific
Lung	ILCCO, DFCI, Genomics England meta-analysis (unpublished)	7,352	4,598	All-cause
Melanoma	Melanoma Institute Australia, UK Biobank [4]		1,041	Melanoma-specific
Ovary	OCAC [5]	2,901	1,656	All-cause
Prostate	PRACTICAL [6]	67,758	7,914	Prostate cancer-specific

2. Sun BB., et al. Nature. 2023;622(7982):329-38.

- 3. Morra, A., et al. Breast Cancer Research, 2021. 23(1): p. 86.
- 4. Seviiri, M., et al. J Transl Med, 2022. 20(1): p. 403.
- 5. Johnatty, S.E. Clin Cancer Res, 2015. **21**(23): p. 5264-76.

6. Szulkin, R., et al., Cancer Epidemiol Biomarkers Prev, 2015. 24(11): p. 1796-800.

Methods overview

- 1. Main analysis
 - Summary-level MR (IVW) with survival outcome
- 2. Collider bias assessment
 - Summary-level MR (IVW) with risk outcome
- 3. Sensitivity analyses (ongoing)

Risk of mortality

MRC Integrative Epidemiology Unit

7. Mitchell, R.E., et al., . PLoS Genet, 2023:19(2): p.e1010596.

Cancer risk

Lack of clear associations for PD-L1

- Poor instrument validity
 - > Biologically relevant tissue?
 - General vs cancer population
- Limitations of prognosis MR:
 - Power
 - Heritability
 - Treatment effects

Conclusions

<u>Aim 1:</u> Investigate repurposing potential of ICIs in cancer treatment using MR

- No strong evidence for PD-L1 inhibitor repurposing
- Some evidence for PD-1 inhibitor repurposing

<u>Aim 2:</u> Investigate applicability of MR in cancer survival settings

- Remaining challenges: power, instrument validity
- Potential host (PD-1) vs tumour (PD-L1) difference in applicability

Acknowledgements

<u>University of Bristol</u> Richard M Martin James Yarmolinsky (Imperial College London) Philip C Haycock

Melanoma Mathias Seviiri Matthew H. Law Mark M. Iles

Genomics England

PRACTICAL consortium

DFCI (lung) Yuxi Liu Alexander Gusev

<u>TCGA (lung)</u> Joshua Atkins Karl Smith-Byrne ILCCO (lung) Mei Dong M. Catherine Brown Karl Smith-Byrne Geoffrey Liu Rayjean J. Hung Wei Xu ILCCO consortium

Patients and families

MRC Integrative Epidemiology Unit

Thank you

MRC Integrative Epidemiology Unit

X @MRC_IEU

bristol.ac.uk/integrative-epidemiology