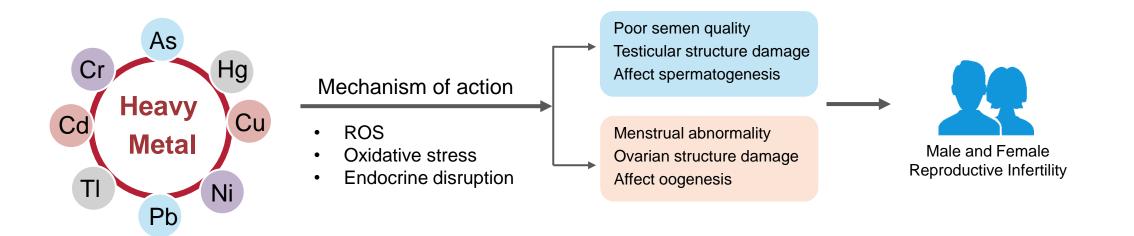

Associations of Maternal and Paternal Multiple Metals Exposure with In Vitro Fertilization Outcomes

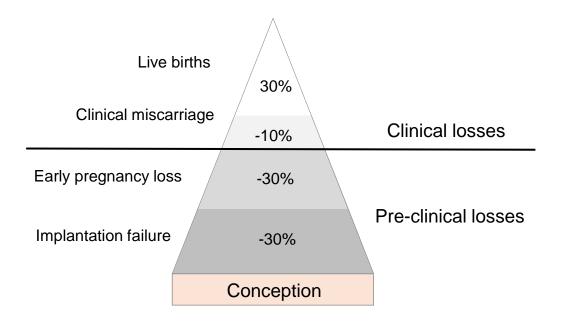
Yangqian Jiang


School of Public Health, Nanjing Medical University, Nanjing China

Sep 2024

Background

- Heavy metals are common environmental pollutants.
- Long-term, low-dose heavy metal exposure can damage reproductive systems of both male and female.



J Matern Fetal Neonatal Med 2016 Clin Med Insights Pediatr 2016 J Biochem Mol Toxicol 2021

Background

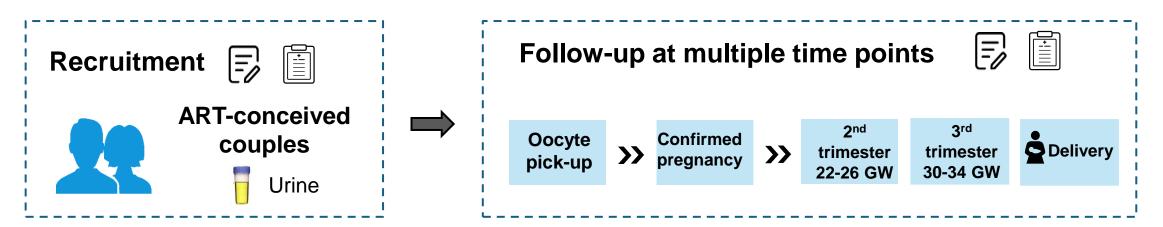
- Since 1978, assisted reproductive technology is widely used to treat infertility.
- In vitro fertilization (IVF) cycles provide a unique opportunity to investigate the effects of environment pollution on pregnancy outcomes.

Lancet Planet Health 2019 Environ Int 2019 Hum Reprod Update 2002

Research Gaps

- Previous studies mainly focused on maternal metal exposure.
- Limited understanding of paternal exposure's impact on IVF outcomes.
- Combined effects of multiple metal exposures on IVF outcomes is scarce.

Objective



To investigate associations between maternal and paternal multiple metal exposures and adverse IVF outcomes

• Study participants

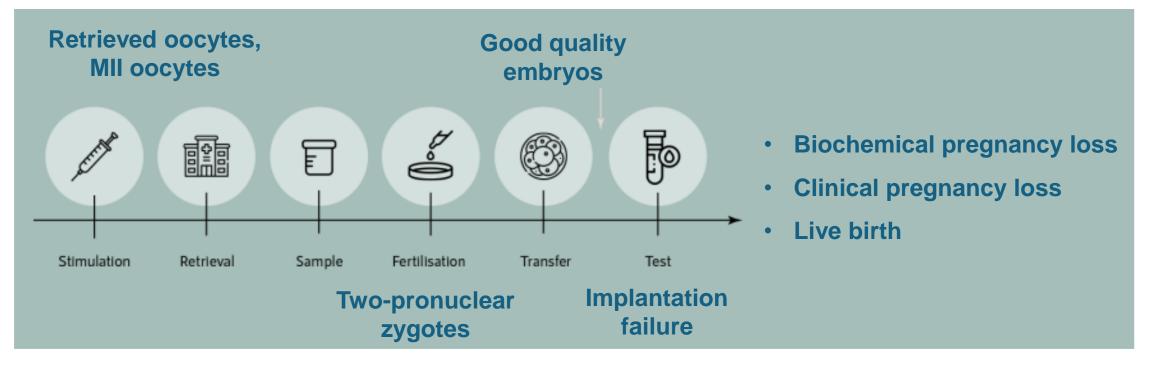
Based on the Jiangsu birth cohort, 1,804 couples undergoing their first IVF treatment from 2015 to 2018.

• Study design

Questionnaires: demographic-economic characteristics, lifestyles, medical history, gravidity and parity history

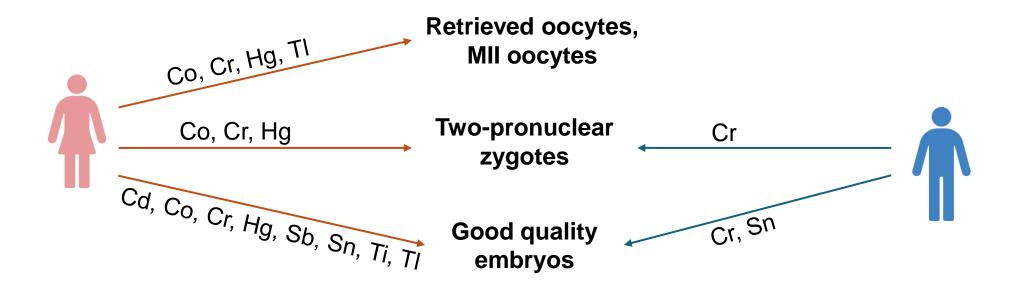
[<u>]</u>

Clinical information: infertility diagnoses, ART treatment factors, and pregnancy outcomes


Methods

• Metal exposure assessment

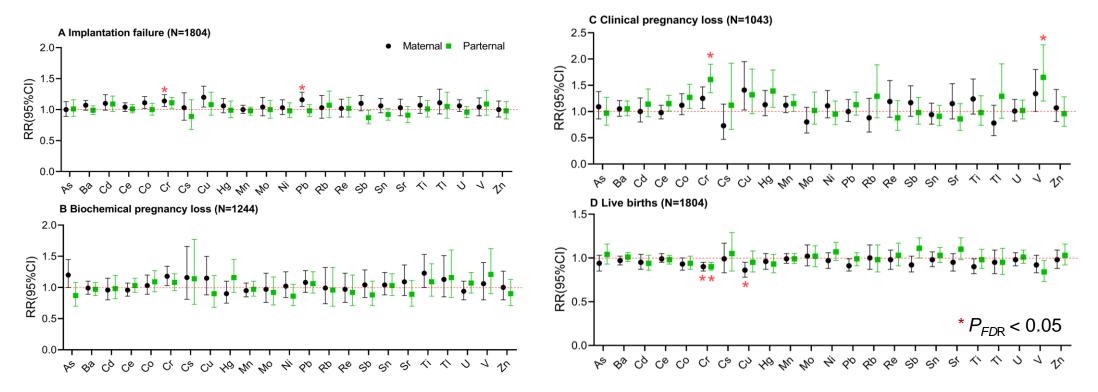
23 metals (As, Ba, Cd, Pb, Ti, Tl, etc) Inductively Coupled Plasma Mass Spectrometry (ICP-MS) Urine specific gravity correction for urinary dilution



• IVF Outcomes

Results

- Individual metal exposure
- ✓ Maternal exposure to specific metals were negatively associated with the number of retrieved and qualified oocytes, MII oocytes, two-pronuclear zygotes, and good quality embryos.
- Paternal exposure to Cr were negatively associated with two-pronuclear zygotes and good quality embryos.


Results

- Individual metal exposure
 - ✓ Maternal Exposure: Implantation Failure: Cr, RR = 1.14; Pb, RR = 1.16; Live Births:

Cr, RR = 0.90; **Cu**, RR = 0.86

✓ Paternal Exposure: Clinical Pregnancy Loss: Cr, RR = 1.61; V: RR = 1.65; Live Births:

Cr: RR = 0.90

Results

• Multiple metal exposure

Maternal multiple metal exposure was negatively associated with live birth.

IVF outcome	% change (95% CI)	Р	IVF outcome	RR (95% CI)	Р
Retrieved oocytes			Implantation failure		
Maternal	-7.27 (-10.57, -3.85)	<0.001	Maternal	1.26 (1.02, 1.57)	0.035
MII oocytes			Paternal	1.01 (0.80, 1.27)	0.932
Maternal	-7.54 (-10.98, -3.97)	<0.001	Couples	1.22 (0.92, 1.63)	0.173
2-PN zoosperms			Clinical pregnancy loss		
Maternal	-9.54 (-13.33, -5.58)	<0.001	Maternal	1.43 (0.89, 2.29)	0.136
Paternal	1.08 (-3.32, 5.70)	0.634	Paternal	1.56 (0.97, 2.52)	0.068
Couples	-7.78 (-12.92, -2.33)	0.005	Couples	2.04 (1.06, 3.95)	0.033
Good quality embryos			Live births		
Maternal	-19.70 (-24.03, -15.12)	<0.001	Maternal	0.82 (0.68, 0.98)	0.027
Paternal	1.90 (-3.79, 7.93)	0.520	Paternal	0.93 (0.77, 1.11)	0.410
Couples	-16.56 (-22.51, -10.14)	<0.001	Couples	0.82 (0.65, 1.05)	0.116

Quantile G-computation mixture analysis

- Maternal & paternal metal exposure linked to poor IVF outcomes.
- Maternal exposure to multiple metals associated with lower live birth rates.
- Reducing toxic metal exposure may improve live birth rates in IVF treatments.
- Further research needed on biological mechanisms.

Thanks to our team

Thanks

